An unified approach to link prediction in collaboration networks
- URL: http://arxiv.org/abs/2411.01066v1
- Date: Fri, 01 Nov 2024 22:40:39 GMT
- Title: An unified approach to link prediction in collaboration networks
- Authors: Juan Sosa, Diego Martínez, Nicolás Guerrero,
- Abstract summary: This article investigates and compares three approaches to link prediction in colaboration networks.
The ERGM is employed to capture general structural patterns within the network.
The GCN and Word2Vec+MLP models leverage deep learning techniques to learn adaptive structural representations of nodes and their relationships.
- Score: 0.0
- License:
- Abstract: This article investigates and compares three approaches to link prediction in colaboration networks, namely, an ERGM (Exponential Random Graph Model; Robins et al. 2007), a GCN (Graph Convolutional Network; Kipf and Welling 2017), and a Word2Vec+MLP model (Word2Vec model combined with a multilayer neural network; Mikolov et al. 2013a and Goodfellow et al. 2016). The ERGM, grounded in statistical methods, is employed to capture general structural patterns within the network, while the GCN and Word2Vec+MLP models leverage deep learning techniques to learn adaptive structural representations of nodes and their relationships. The predictive performance of the models is assessed through extensive simulation exercises using cross-validation, with metrics based on the receiver operating characteristic curve. The results clearly show the superiority of machine learning approaches in link prediction, particularly in large networks, where traditional models such as ERGM exhibit limitations in scalability and the ability to capture inherent complexities. These findings highlight the potential benefits of integrating statistical modeling techniques with deep learning methods to analyze complex networks, providing a more robust and effective framework for future research in this field.
Related papers
- Analysing the Behaviour of Tree-Based Neural Networks in Regression Tasks [3.912345988363511]
This paper endeavours to decode the behaviour of tree-based neural network models in the context of regression challenges.
We extend the application of established models--tree-based CNNs, Code2Vec, and Transformer-based methods--to predict the execution time of source code by parsing it to an AST.
Our proposed dual transformer demonstrates remarkable adaptability and robust performance across diverse datasets.
arXiv Detail & Related papers (2024-06-17T11:47:14Z) - A parameterised model for link prediction using node centrality and
similarity measure based on graph embedding [5.507008181141738]
Link prediction is a key aspect of graph machine learning.
It involves predicting new links that may form between network nodes.
Existing models have significant shortcomings.
We present the Node Centrality and Similarity Based.
Model (NCSM), a novel method for link prediction tasks.
arXiv Detail & Related papers (2023-09-11T13:13:54Z) - Generalization and Estimation Error Bounds for Model-based Neural
Networks [78.88759757988761]
We show that the generalization abilities of model-based networks for sparse recovery outperform those of regular ReLU networks.
We derive practical design rules that allow to construct model-based networks with guaranteed high generalization.
arXiv Detail & Related papers (2023-04-19T16:39:44Z) - CCasGNN: Collaborative Cascade Prediction Based on Graph Neural Networks [0.49269463638915806]
Cascade prediction aims at modeling information diffusion in the network.
Recent efforts devoted to combining network structure and sequence features by graph neural networks and recurrent neural networks.
We propose a novel method CCasGNN considering the individual profile, structural features, and sequence information.
arXiv Detail & Related papers (2021-12-07T11:37:36Z) - Anomaly Detection on Attributed Networks via Contrastive Self-Supervised
Learning [50.24174211654775]
We present a novel contrastive self-supervised learning framework for anomaly detection on attributed networks.
Our framework fully exploits the local information from network data by sampling a novel type of contrastive instance pair.
A graph neural network-based contrastive learning model is proposed to learn informative embedding from high-dimensional attributes and local structure.
arXiv Detail & Related papers (2021-02-27T03:17:20Z) - Probabilistic Graph Attention Network with Conditional Kernels for
Pixel-Wise Prediction [158.88345945211185]
We present a novel approach that advances the state of the art on pixel-level prediction in a fundamental aspect, i.e. structured multi-scale features learning and fusion.
We propose a probabilistic graph attention network structure based on a novel Attention-Gated Conditional Random Fields (AG-CRFs) model for learning and fusing multi-scale representations in a principled manner.
arXiv Detail & Related papers (2021-01-08T04:14:29Z) - Model-Based Deep Learning [155.063817656602]
Signal processing, communications, and control have traditionally relied on classical statistical modeling techniques.
Deep neural networks (DNNs) use generic architectures which learn to operate from data, and demonstrate excellent performance.
We are interested in hybrid techniques that combine principled mathematical models with data-driven systems to benefit from the advantages of both approaches.
arXiv Detail & Related papers (2020-12-15T16:29:49Z) - Edge-assisted Democratized Learning Towards Federated Analytics [67.44078999945722]
We show the hierarchical learning structure of the proposed edge-assisted democratized learning mechanism, namely Edge-DemLearn.
We also validate Edge-DemLearn as a flexible model training mechanism to build a distributed control and aggregation methodology in regions.
arXiv Detail & Related papers (2020-12-01T11:46:03Z) - Ensembles of Spiking Neural Networks [0.3007949058551534]
This paper demonstrates how to construct ensembles of spiking neural networks producing state-of-the-art results.
We achieve classification accuracies of 98.71%, 100.0%, and 99.09%, on the MNIST, NMNIST and DVS Gesture datasets respectively.
We formalize spiking neural networks as GLM predictors, identifying a suitable representation for their target domain.
arXiv Detail & Related papers (2020-10-15T17:45:18Z) - Learning Queuing Networks by Recurrent Neural Networks [0.0]
We propose a machine-learning approach to derive performance models from data.
We exploit a deterministic approximation of their average dynamics in terms of a compact system of ordinary differential equations.
This allows for an interpretable structure of the neural network, which can be trained from system measurements to yield a white-box parameterized model.
arXiv Detail & Related papers (2020-02-25T10:56:47Z) - Model Fusion via Optimal Transport [64.13185244219353]
We present a layer-wise model fusion algorithm for neural networks.
We show that this can successfully yield "one-shot" knowledge transfer between neural networks trained on heterogeneous non-i.i.d. data.
arXiv Detail & Related papers (2019-10-12T22:07:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.