Music Foundation Model as Generic Booster for Music Downstream Tasks
- URL: http://arxiv.org/abs/2411.01135v2
- Date: Tue, 05 Nov 2024 08:51:44 GMT
- Title: Music Foundation Model as Generic Booster for Music Downstream Tasks
- Authors: WeiHsiang Liao, Yuhta Takida, Yukara Ikemiya, Zhi Zhong, Chieh-Hsin Lai, Giorgio Fabbro, Kazuki Shimada, Keisuke Toyama, Kinwai Cheuk, Marco A. Martínez-Ramírez, Shusuke Takahashi, Stefan Uhlich, Taketo Akama, Woosung Choi, Yuichiro Koyama, Yuki Mitsufuji,
- Abstract summary: We introduce SoniDo, a music foundation model (MFM) designed to extract hierarchical features from target music samples.
By leveraging hierarchical intermediate features, SoniDo constrains the information granularity, leading to improved performance across various downstream tasks.
- Score: 26.09067595520842
- License:
- Abstract: We demonstrate the efficacy of using intermediate representations from a single foundation model to enhance various music downstream tasks. We introduce SoniDo, a music foundation model (MFM) designed to extract hierarchical features from target music samples. By leveraging hierarchical intermediate features, SoniDo constrains the information granularity, leading to improved performance across various downstream tasks including both understanding and generative tasks. We specifically evaluated this approach on representative tasks such as music tagging, music transcription, music source separation, and music mixing. Our results reveal that the features extracted from foundation models provide valuable enhancements in training downstream task models. This highlights the capability of using features extracted from music foundation models as a booster for downstream tasks. Our approach not only benefits existing task-specific models but also supports music downstream tasks constrained by data scarcity. This paves the way for more effective and accessible music processing solutions.
Related papers
Err
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.