Hollowed Net for On-Device Personalization of Text-to-Image Diffusion Models
- URL: http://arxiv.org/abs/2411.01179v1
- Date: Sat, 02 Nov 2024 08:42:48 GMT
- Title: Hollowed Net for On-Device Personalization of Text-to-Image Diffusion Models
- Authors: Wonguk Cho, Seokeon Choi, Debasmit Das, Matthias Reisser, Taesup Kim, Sungrack Yun, Fatih Porikli,
- Abstract summary: This paper presents an efficient LoRA-based personalization approach for on-device subject-driven generation.
Our method, termed Hollowed Net, enhances memory efficiency during fine-tuning by modifying the architecture of a diffusion U-Net.
- Score: 51.3915762595891
- License:
- Abstract: Recent advancements in text-to-image diffusion models have enabled the personalization of these models to generate custom images from textual prompts. This paper presents an efficient LoRA-based personalization approach for on-device subject-driven generation, where pre-trained diffusion models are fine-tuned with user-specific data on resource-constrained devices. Our method, termed Hollowed Net, enhances memory efficiency during fine-tuning by modifying the architecture of a diffusion U-Net to temporarily remove a fraction of its deep layers, creating a hollowed structure. This approach directly addresses on-device memory constraints and substantially reduces GPU memory requirements for training, in contrast to previous methods that primarily focus on minimizing training steps and reducing the number of parameters to update. Additionally, the personalized Hollowed Net can be transferred back into the original U-Net, enabling inference without additional memory overhead. Quantitative and qualitative analyses demonstrate that our approach not only reduces training memory to levels as low as those required for inference but also maintains or improves personalization performance compared to existing methods.
Related papers
- Mining Your Own Secrets: Diffusion Classifier Scores for Continual Personalization of Text-to-Image Diffusion Models [39.46152582128077]
In the real world, a user may wish to personalize a model on multiple concepts but one at a time.
Most personalization methods fail to find a balance between acquiring new concepts and retaining previous ones.
We propose regularizing the parameter-space and function-space of text-to-image diffusion models.
arXiv Detail & Related papers (2024-10-01T13:54:29Z) - Iterative Ensemble Training with Anti-Gradient Control for Mitigating Memorization in Diffusion Models [20.550324116099357]
Diffusion models are known for their tremendous ability to generate novel and high-quality samples.
Recent approaches for memory mitigation either only focused on the text modality problem in cross-modal generation tasks or utilized data augmentation strategies.
We propose a novel training framework for diffusion models from the perspective of visual modality, which is more generic and fundamental for mitigating memorization.
arXiv Detail & Related papers (2024-07-22T02:19:30Z) - E$^{2}$GAN: Efficient Training of Efficient GANs for Image-to-Image Translation [69.72194342962615]
We introduce and address a novel research direction: can the process of distilling GANs from diffusion models be made significantly more efficient?
First, we construct a base GAN model with generalized features, adaptable to different concepts through fine-tuning, eliminating the need for training from scratch.
Second, we identify crucial layers within the base GAN model and employ Low-Rank Adaptation (LoRA) with a simple yet effective rank search process, rather than fine-tuning the entire base model.
Third, we investigate the minimal amount of data necessary for fine-tuning, further reducing the overall training time.
arXiv Detail & Related papers (2024-01-11T18:59:14Z) - A-SDM: Accelerating Stable Diffusion through Redundancy Removal and
Performance Optimization [54.113083217869516]
In this work, we first explore the computational redundancy part of the network.
We then prune the redundancy blocks of the model and maintain the network performance.
Thirdly, we propose a global-regional interactive (GRI) attention to speed up the computationally intensive attention part.
arXiv Detail & Related papers (2023-12-24T15:37:47Z) - Pre-Pruning and Gradient-Dropping Improve Differentially Private Image
Classification [9.120531252536617]
We introduce a new training paradigm that uses textitpre-pruning and textitgradient-dropping to reduce the parameter space and improve scalability.
Our training paradigm introduces a tension between the rates of pre-pruning and gradient-dropping, privacy loss, and classification accuracy.
arXiv Detail & Related papers (2023-06-19T14:35:28Z) - Exploiting Diffusion Prior for Real-World Image Super-Resolution [75.5898357277047]
We present a novel approach to leverage prior knowledge encapsulated in pre-trained text-to-image diffusion models for blind super-resolution.
By employing our time-aware encoder, we can achieve promising restoration results without altering the pre-trained synthesis model.
arXiv Detail & Related papers (2023-05-11T17:55:25Z) - Iterative Soft Shrinkage Learning for Efficient Image Super-Resolution [91.3781512926942]
Image super-resolution (SR) has witnessed extensive neural network designs from CNN to transformer architectures.
This work investigates the potential of network pruning for super-resolution iteration to take advantage of off-the-shelf network designs and reduce the underlying computational overhead.
We propose a novel Iterative Soft Shrinkage-Percentage (ISS-P) method by optimizing the sparse structure of a randomly network at each and tweaking unimportant weights with a small amount proportional to the magnitude scale on-the-fly.
arXiv Detail & Related papers (2023-03-16T21:06:13Z) - Training Large-Vocabulary Neural Language Models by Private Federated
Learning for Resource-Constrained Devices [14.604785223644718]
Federated Learning (FL) is a technique to train models using data distributed across devices.
Differential Privacy (DP) provides a formal privacy guarantee for sensitive data.
We propose Partial Embedding Updates (PEU) to decrease noise by decreasing payload size.
arXiv Detail & Related papers (2022-07-18T23:53:17Z) - Dimensionality Reduced Training by Pruning and Freezing Parts of a Deep
Neural Network, a Survey [69.3939291118954]
State-of-the-art deep learning models have a parameter count that reaches into the billions. Training, storing and transferring such models is energy and time consuming, thus costly.
Model compression lowers storage and transfer costs, and can further make training more efficient by decreasing the number of computations in the forward and/or backward pass.
This work is a survey on methods which reduce the number of trained weights in deep learning models throughout the training.
arXiv Detail & Related papers (2022-05-17T05:37:08Z) - Low-rank Gradient Approximation For Memory-Efficient On-device Training
of Deep Neural Network [9.753369031264532]
Training machine learning models on mobile devices has the potential of improving both privacy and accuracy of the models.
One of the major obstacles to achieving this goal is the memory limitation of mobile devices.
We propose approximating the gradient matrices of deep neural networks using a low-rank parameterization as an avenue to save training memory.
arXiv Detail & Related papers (2020-01-24T05:12:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.