How Memory-Safe is IoT? Assessing the Impact of Memory-Protection Solutions for Securing Wireless Gateways
- URL: http://arxiv.org/abs/2411.01377v1
- Date: Sat, 02 Nov 2024 23:00:37 GMT
- Title: How Memory-Safe is IoT? Assessing the Impact of Memory-Protection Solutions for Securing Wireless Gateways
- Authors: Vadim Safronov, Ionut Bostan, Nicholas Allott, Andrew Martin,
- Abstract summary: Memory-based vulnerabilities are among the most serious threats in software, with no universal solution yet available.
This paper explores the impact of memory safety on the IoT domain through an empirical large-scale analysis of memory-related vulnerabilities in modern wireless gateways.
- Score: 0.0
- License:
- Abstract: The rapid development of the Internet of Things (IoT) has enabled novel user-centred applications, including many in safety-critical areas such as healthcare, smart environment security, and emergency response systems. The diversity in IoT manufacturers, standards, and devices creates a combinatorial explosion of such deployment scenarios, leading to increased security and safety threats due to the difficulty of managing such heterogeneity. In almost every IoT deployment, wireless gateways are crucial for interconnecting IoT devices and providing services, yet they are vulnerable to external threats and serve as key entry points for large-scale IoT attacks. Memory-based vulnerabilities are among the most serious threats in software, with no universal solution yet available. Legacy memory protection mechanisms, such as canaries, RELRO, NX, and Fortify, have enhanced memory safety but remain insufficient for comprehensive protection. Emerging technologies like ARM-MTE, CHERI, and Rust are based on more universal and robust Secure-by-Design (SbD) memory safety principles, yet each entails different trade-offs in hardware or code modifications. Given the challenges of balancing security levels with associated overheads in IoT systems, this paper explores the impact of memory safety on the IoT domain through an empirical large-scale analysis of memory-related vulnerabilities in modern wireless gateways. Our results show that memory vulnerabilities constitute the majority of IoT gateway threats, underscoring the necessity for SbD solutions, with the choice of memory-protection technology depending on specific use cases and associated overheads.
Related papers
- Securing Legacy Communication Networks via Authenticated Cyclic Redundancy Integrity Check [98.34702864029796]
We propose Authenticated Cyclic Redundancy Integrity Check (ACRIC)
ACRIC preserves backward compatibility without requiring additional hardware and is protocol agnostic.
We show that ACRIC offers robust security with minimal transmission overhead ( 1 ms)
arXiv Detail & Related papers (2024-11-21T18:26:05Z) - Cyberattack Data Analysis in IoT Environments using Big Data [0.0]
Our research addresses the growing connectivity and security challenges, including interoperability and standardized protocols.
Our in-depth analysis of security vulnerabilities identified intricate patterns and threats, such as attack behavior, network traffic anomalies, TCP flag usage, and targeted attacks.
arXiv Detail & Related papers (2024-06-14T02:12:43Z) - Differentiated Security Architecture for Secure and Efficient Infotainment Data Communication in IoV Networks [55.340315838742015]
Negligence on the security of infotainment data communication in IoV networks can unintentionally open an easy access point for social engineering attacks.
In particular, we first classify data communication in the IoV network, examine the security focus of each data communication, and then develop a differentiated security architecture to provide security protection on a file-to-file basis.
arXiv Detail & Related papers (2024-03-29T12:01:31Z) - Generative AI for Secure Physical Layer Communications: A Survey [80.0638227807621]
Generative Artificial Intelligence (GAI) stands at the forefront of AI innovation, demonstrating rapid advancement and unparalleled proficiency in generating diverse content.
In this paper, we offer an extensive survey on the various applications of GAI in enhancing security within the physical layer of communication networks.
We delve into the roles of GAI in addressing challenges of physical layer security, focusing on communication confidentiality, authentication, availability, resilience, and integrity.
arXiv Detail & Related papers (2024-02-21T06:22:41Z) - IoT in the Cloud: Exploring Security Challenges and Mitigations for a Connected World [18.36339203254509]
The Internet of Things (IoT) has seen remarkable advancements in recent years, leading to a paradigm shift in the digital landscape.
IoT devices, inherently connected to the internet, are susceptible to various forms of attacks.
IoT services often handle sensitive user data, which could be exploited by malicious actors or unauthorized service providers.
arXiv Detail & Related papers (2024-02-01T05:55:43Z) - Effective Intrusion Detection in Heterogeneous Internet-of-Things Networks via Ensemble Knowledge Distillation-based Federated Learning [52.6706505729803]
We introduce Federated Learning (FL) to collaboratively train a decentralized shared model of Intrusion Detection Systems (IDS)
FLEKD enables a more flexible aggregation method than conventional model fusion techniques.
Experiment results show that the proposed approach outperforms local training and traditional FL in terms of both speed and performance.
arXiv Detail & Related papers (2024-01-22T14:16:37Z) - Fortress: Securing IoT Peripherals with Trusted Execution Environments [2.2476099815732518]
Internet of Things (IoT) devices often collect confidential information, such as audio and visual data, through peripheral inputs like microphones and cameras.
We propose a generic design to enhance the privacy in IoT-based systems by isolating peripheral I/O memory regions in a secure kernel space of a trusted execution environment (TEE)
The sensitive peripheral data is then securely transferred to a user-space TEE, where obfuscation mechanisms can be applied before it is relayed to third parties, e.g., the cloud.
arXiv Detail & Related papers (2023-12-05T07:12:58Z) - Classification of cyber attacks on IoT and ubiquitous computing devices [49.1574468325115]
This paper provides a classification of IoT malware.
Major targets and used exploits for attacks are identified and referred to the specific malware.
The majority of current IoT attacks continue to be of comparably low effort and level of sophistication and could be mitigated by existing technical measures.
arXiv Detail & Related papers (2023-12-01T16:10:43Z) - Navigating the IoT landscape: Unraveling forensics, security issues, applications, research challenges, and future [6.422895251217666]
This paper reviews forensic and security issues associated with IoT in different fields.
Most IoT devices are vulnerable to attacks due to a lack of standardized security measures.
To fulfil the security-conscious needs of consumers, IoT can be used to develop a smart home system.
arXiv Detail & Related papers (2023-09-06T04:41:48Z) - Machine and Deep Learning for IoT Security and Privacy: Applications,
Challenges, and Future Directions [0.0]
The integration of the Internet of Things (IoT) connects a number of intelligent devices with a minimum of human interference.
Current security approaches can also be improved to protect the IoT environment effectively.
Deep learning (DL)/ machine learning (ML) methods are essential to turn IoT systems protection from simply enabling safe contact between IoT systems to intelligence systems in security.
arXiv Detail & Related papers (2022-10-24T19:02:27Z) - Smart Home, security concerns of IoT [91.3755431537592]
The IoT (Internet of Things) has become widely popular in the domestic environments.
People are renewing their homes into smart homes; however, the privacy concerns of owning many Internet connected devices with always-on environmental sensors remain insufficiently addressed.
Default and weak passwords, cheap materials and hardware, and unencrypted communication are identified as the principal threats and vulnerabilities of IoT devices.
arXiv Detail & Related papers (2020-07-06T10:36:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.