Pulsation of quantum walk on Johnson graph
- URL: http://arxiv.org/abs/2411.01468v1
- Date: Sun, 03 Nov 2024 07:32:19 GMT
- Title: Pulsation of quantum walk on Johnson graph
- Authors: Taisuke Hosaka, Etsuo Segawa,
- Abstract summary: We propose a phenomenon of discrete-time quantum walks on graphs called the pulsation.
The pulsation means that the state periodically transfers between $G_1$ and $G_2$ with the initial state of the uniform superposition.
The proof is based on Kato's theory in finite-dimensional vector spaces.
- Score: 0.0
- License:
- Abstract: We propose a phenomenon of discrete-time quantum walks on graphs called the pulsation, which is a generalization of a phenomenon in the quantum searches. This phenomenon is discussed on a composite graph formed by two connected graphs $G_{1}$ and $G_{2}$. The pulsation means that the state periodically transfers between $G_{1}$ and $G_{2}$ with the initial state of the uniform superposition on $G_1$. In this paper, we focus on the case for the Grover walk where $G_{1}$ is the Johnson graph and $G_{2}$ is a star graph. Also, the composite graph is constructed by identifying an arbitrary vertex of the Johnson graph with the internal vertex of the star graph. In that case, we find the pulsation with $O(\sqrt{N^{1+1/k}})$ periodicity, where $N$ is the number of vertices of the Johnson graph. The proof is based on Kato's perturbation theory in finite-dimensional vector spaces.
Related papers
- Complexity of graph-state preparation by Clifford circuits [2.7010154811483167]
We show a connection between the CZ-complexity of graph state $|Grangle$ and the rank-width of the graph $G$.
We present quantum algorithms preparing $|Grangle$ with $O(n)$ CZ-complexity when $G$ is included in special classes of graphs.
arXiv Detail & Related papers (2024-02-08T18:08:09Z) - A Graph is Worth $K$ Words: Euclideanizing Graph using Pure Transformer [47.25114679486907]
We introduce GraphsGPT, featuring a Graph2Seq encoder that transforms Non-Euclidean graphs into learnable Graph Words.
A GraphGPT decoder reconstructs the original graph from Graph Words to ensure information equivalence.
arXiv Detail & Related papers (2024-02-04T12:29:40Z) - Finding the Missing-half: Graph Complementary Learning for
Homophily-prone and Heterophily-prone Graphs [48.79929516665371]
Graphs with homophily-prone edges tend to connect nodes with the same class.
Heterophily-prone edges tend to build relationships between nodes with different classes.
Existing GNNs only take the original graph during training.
arXiv Detail & Related papers (2023-06-13T08:06:10Z) - Tensor Rank and Other Multipartite Entanglement Measures of Graph States [5.8087716340417765]
Graph states play an important role in quantum information theory through their connection to measurement-based computing and error correction.
We show that several multipartite extensions of bipartite entanglement measures are dichotomous for graph states based on the connectivity of the corresponding graph.
arXiv Detail & Related papers (2022-09-13T21:59:31Z) - AnchorGAE: General Data Clustering via $O(n)$ Bipartite Graph
Convolution [79.44066256794187]
We show how to convert a non-graph dataset into a graph by introducing the generative graph model, which is used to build graph convolution networks (GCNs)
A bipartite graph constructed by anchors is updated dynamically to exploit the high-level information behind data.
We theoretically prove that the simple update will lead to degeneration and a specific strategy is accordingly designed.
arXiv Detail & Related papers (2021-11-12T07:08:13Z) - Perfect State Transfer in Weighted Cubelike Graphs [0.0]
A continuous-time quantum random walk describes the motion of a quantum mechanical particle on a graph.
We generalize the PST or periodicity of cubelike graphs to that of weighted cubelike graphs.
arXiv Detail & Related papers (2021-09-26T13:44:44Z) - Spatial Search on Johnson Graphs by Continuous-Time Quantum Walk [0.0]
We show that spatial search on Johnson graphs by continuous-time quantum walk achieves the lower bound $pisqrtN/2$ with success probability $1$ally for every fixed diameter.
The proof is mathematically rigorous and can be used for other graph classes.
arXiv Detail & Related papers (2021-08-04T12:16:24Z) - Hamiltonian systems, Toda lattices, Solitons, Lax Pairs on weighted
Z-graded graphs [62.997667081978825]
We identify conditions which allow one to lift one dimensional solutions to solutions on graphs.
We show that even for a simple example of a topologically interesting graph the corresponding non-trivial Lax pairs and associated unitary transformations do not lift to a Lax pair on the Z-graded graph.
arXiv Detail & Related papers (2020-08-11T17:58:13Z) - Continuous-time quantum walks in the presence of a quadratic
perturbation [55.41644538483948]
We address the properties of continuous-time quantum walks with Hamiltonians of the form $mathcalH= L + lambda L2$.
We consider cycle, complete, and star graphs because paradigmatic models with low/high connectivity and/or symmetry.
arXiv Detail & Related papers (2020-05-13T14:53:36Z) - Asymptotic entropy of the Gibbs state of complex networks [68.8204255655161]
The Gibbs state is obtained from the Laplacian, normalized Laplacian or adjacency matrices associated with a graph.
We calculated the entropy of the Gibbs state for a few classes of graphs and studied their behavior with changing graph order and temperature.
Our results show that the behavior of Gibbs entropy as a function of the temperature differs for a choice of real networks when compared to the random ErdHos-R'enyi graphs.
arXiv Detail & Related papers (2020-03-18T18:01:28Z) - Search on Vertex-Transitive Graphs by Lackadaisical Quantum Walk [0.0]
The lackadaisical quantum walk is a discrete-time, coined quantum walk on a graph.
It can improve spatial search on the complete graph, discrete torus, cycle, and regular complete bipartite graph.
We present a number of numerical simulations supporting this hypothesis.
arXiv Detail & Related papers (2020-02-26T00:10:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.