Exploring PCA-based feature representations of image pixels via CNN to enhance food image segmentation
- URL: http://arxiv.org/abs/2411.01469v2
- Date: Tue, 05 Nov 2024 01:59:41 GMT
- Title: Exploring PCA-based feature representations of image pixels via CNN to enhance food image segmentation
- Authors: Ying Dai,
- Abstract summary: This paper proposes a novel approach that explores PCA-based feature representations of image pixels using a convolutional neural network (CNN) to enhance segmentation.
An internal clustering metric based on the silhouette score is defined to evaluate the clustering quality of various pixel-level feature representations.
The proposed method performs well on the ingredient-labeled dataset FoodSeg103, achieving a mean Intersection over Union (mIoU) score of 0.5423.
- Score: 2.1756081703276
- License:
- Abstract: For open vocabulary recognition of ingredients in food images, segmenting the ingredients is a crucial step. This paper proposes a novel approach that explores PCA-based feature representations of image pixels using a convolutional neural network (CNN) to enhance segmentation. An internal clustering metric based on the silhouette score is defined to evaluate the clustering quality of various pixel-level feature representations generated by different feature maps derived from various CNN backbones. Using this metric, the paper explores optimal feature representation selection and suitable clustering methods for ingredient segmentation. Additionally, it is found that principal component (PC) maps derived from concatenations of backbone feature maps improve the clustering quality of pixel-level feature representations, resulting in stable segmentation outcomes. Notably, the number of selected eigenvalues can be used as the number of clusters to achieve good segmentation results. The proposed method performs well on the ingredient-labeled dataset FoodSeg103, achieving a mean Intersection over Union (mIoU) score of 0.5423. Importantly, the proposed method is unsupervised, and pixel-level feature representations from backbones are not fine-tuned on specific datasets. This demonstrates the flexibility, generalizability, and interpretability of the proposed method, while reducing the need for extensive labeled datasets.
Related papers
- Freestyle Sketch-in-the-Loop Image Segmentation [116.1810651297801]
We introduce a "sketch-in-the-loop" image segmentation framework, enabling the segmentation of visual concepts partially, completely, or in groupings.
This framework capitalises on the synergy between sketch-based image retrieval models and large-scale pre-trained models.
Our purpose-made augmentation strategy enhances the versatility of our sketch-guided mask generation, allowing segmentation at multiple levels.
arXiv Detail & Related papers (2025-01-27T13:07:51Z) - Semi-supervised segmentation of land cover images using nonlinear
canonical correlation analysis with multiple features and t-SNE [1.7000283696243563]
Image segmentation is a clustering task whereby each pixel is assigned a cluster label.
In this work, by resorting to label only a small quantity of pixels, a new semi-supervised segmentation approach is proposed.
The proposed semi-supervised RBF-CCA algorithm has been implemented on several remotely sensed multispectral images.
arXiv Detail & Related papers (2024-01-22T17:56:07Z) - Pixel-Level Clustering Network for Unsupervised Image Segmentation [3.69853388955692]
We present a pixel-level clustering framework for segmenting images into regions without using ground truth annotations.
We also propose a training strategy that utilizes intra-consistency within each superpixel, inter-similarity/dissimilarity between neighboring superpixels, and structural similarity between images.
arXiv Detail & Related papers (2023-10-24T23:06:29Z) - Distilling Ensemble of Explanations for Weakly-Supervised Pre-Training
of Image Segmentation Models [54.49581189337848]
We propose a method to enable the end-to-end pre-training for image segmentation models based on classification datasets.
The proposed method leverages a weighted segmentation learning procedure to pre-train the segmentation network en masse.
Experiment results show that, with ImageNet accompanied by PSSL as the source dataset, the proposed end-to-end pre-training strategy successfully boosts the performance of various segmentation models.
arXiv Detail & Related papers (2022-07-04T13:02:32Z) - Mining Contextual Information Beyond Image for Semantic Segmentation [37.783233906684444]
The paper studies the context aggregation problem in semantic image segmentation.
It proposes to mine the contextual information beyond individual images to further augment the pixel representations.
The proposed method could be effortlessly incorporated into existing segmentation frameworks.
arXiv Detail & Related papers (2021-08-26T14:34:23Z) - Adversarial Feature Augmentation and Normalization for Visual
Recognition [109.6834687220478]
Recent advances in computer vision take advantage of adversarial data augmentation to ameliorate the generalization ability of classification models.
Here, we present an effective and efficient alternative that advocates adversarial augmentation on intermediate feature embeddings.
We validate the proposed approach across diverse visual recognition tasks with representative backbone networks.
arXiv Detail & Related papers (2021-03-22T20:36:34Z) - Visual Object Tracking by Segmentation with Graph Convolutional Network [7.729569666460712]
We propose to utilize graph convolutional network (GCN) model for superpixel based object tracking.
The proposed model provides a general end-to-end framework which integrates i) label linear prediction, and ii) structure-aware feature information of each superpixel together.
arXiv Detail & Related papers (2020-09-05T12:43:21Z) - Out-of-distribution Generalization via Partial Feature Decorrelation [72.96261704851683]
We present a novel Partial Feature Decorrelation Learning (PFDL) algorithm, which jointly optimize a feature decomposition network and the target image classification model.
The experiments on real-world datasets demonstrate that our method can improve the backbone model's accuracy on OOD image classification datasets.
arXiv Detail & Related papers (2020-07-30T05:48:48Z) - High-Order Information Matters: Learning Relation and Topology for
Occluded Person Re-Identification [84.43394420267794]
We propose a novel framework by learning high-order relation and topology information for discriminative features and robust alignment.
Our framework significantly outperforms state-of-the-art by6.5%mAP scores on Occluded-Duke dataset.
arXiv Detail & Related papers (2020-03-18T12:18:35Z) - Weakly-Supervised Semantic Segmentation by Iterative Affinity Learning [86.45526827323954]
Weakly-supervised semantic segmentation is a challenging task as no pixel-wise label information is provided for training.
We propose an iterative algorithm to learn such pairwise relations.
We show that the proposed algorithm performs favorably against the state-of-the-art methods.
arXiv Detail & Related papers (2020-02-19T10:32:03Z) - Building Networks for Image Segmentation using Particle Competition and
Cooperation [0.0]
Particle competition and cooperation (PCC) is a graph-based semi-supervised learning approach.
Building a proper network to feed PCC is crucial to achieve good segmentation results.
An index to evaluate candidate networks is proposed.
arXiv Detail & Related papers (2020-02-14T12:45:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.