Clustering Based on Density Propagation and Subcluster Merging
- URL: http://arxiv.org/abs/2411.01780v1
- Date: Mon, 04 Nov 2024 04:09:36 GMT
- Title: Clustering Based on Density Propagation and Subcluster Merging
- Authors: Feiping Nie, Yitao Song, Jingjing Xue, Rong Wang, Xuelong Li,
- Abstract summary: We propose a density-based node clustering approach that automatically determines the number of clusters and can be applied in both data space and graph space.
Unlike traditional density-based clustering methods, which necessitate calculating the distance between any two nodes, our proposed technique determines density through a propagation process.
- Score: 92.15924057172195
- License:
- Abstract: We propose the DPSM method, a density-based node clustering approach that automatically determines the number of clusters and can be applied in both data space and graph space. Unlike traditional density-based clustering methods, which necessitate calculating the distance between any two nodes, our proposed technique determines density through a propagation process, thereby making it suitable for a graph space. In DPSM, nodes are partitioned into small clusters based on propagated density. The partitioning technique has been proved to be sound and complete. We then extend the concept of spectral clustering from individual nodes to these small clusters, while introducing the CluCut measure to guide cluster merging. This measure is modified in various ways to account for cluster properties, thus provides guidance on when to terminate the merging process. Various experiments have validated the effectiveness of DOSM and the accuracy of these conclusions.
Related papers
- DECWA : Density-Based Clustering using Wasserstein Distance [1.4132765964347058]
We propose a new clustering algorithm based on spatial density and probabilistic approach.
We show that our approach outperforms other state-of-the-art density-based clustering methods on a wide variety of datasets.
arXiv Detail & Related papers (2023-10-25T11:10:08Z) - Reinforcement Graph Clustering with Unknown Cluster Number [91.4861135742095]
We propose a new deep graph clustering method termed Reinforcement Graph Clustering.
In our proposed method, cluster number determination and unsupervised representation learning are unified into a uniform framework.
In order to conduct feedback actions, the clustering-oriented reward function is proposed to enhance the cohesion of the same clusters and separate the different clusters.
arXiv Detail & Related papers (2023-08-13T18:12:28Z) - GFDC: A Granule Fusion Density-Based Clustering with Evidential
Reasoning [22.526274021556755]
density-based clustering algorithms are widely applied because they can detect clusters with arbitrary shapes.
This paper proposes a granule fusion density-based clustering with evidential reasoning (GFDC)
Both local and global densities of samples are measured by a sparse degree metric first.
Then information granules are generated in high-density and low-density regions, assisting in processing clusters with significant density differences.
arXiv Detail & Related papers (2023-05-20T06:27:31Z) - DeepCluE: Enhanced Image Clustering via Multi-layer Ensembles in Deep
Neural Networks [53.88811980967342]
This paper presents a Deep Clustering via Ensembles (DeepCluE) approach.
It bridges the gap between deep clustering and ensemble clustering by harnessing the power of multiple layers in deep neural networks.
Experimental results on six image datasets confirm the advantages of DeepCluE over the state-of-the-art deep clustering approaches.
arXiv Detail & Related papers (2022-06-01T09:51:38Z) - VDPC: Variational Density Peak Clustering Algorithm [16.20037014662979]
We propose a variational density peak clustering (VDPC) algorithm to identify clusters with variational density.
VDPC outperforms two classical algorithms (i.e., DPC and DBSCAN) and four state-of-the-art extended DPC algorithms.
arXiv Detail & Related papers (2021-12-29T12:50:09Z) - Skeleton Clustering: Dimension-Free Density-based Clustering [0.2538209532048866]
We introduce a density-based clustering method called skeleton clustering.
To bypass the curse of dimensionality, we propose surrogate density measures that are less dependent on the dimension but have intuitive geometric interpretations.
arXiv Detail & Related papers (2021-04-21T21:25:02Z) - Scalable Hierarchical Agglomerative Clustering [65.66407726145619]
Existing scalable hierarchical clustering methods sacrifice quality for speed.
We present a scalable, agglomerative method for hierarchical clustering that does not sacrifice quality and scales to billions of data points.
arXiv Detail & Related papers (2020-10-22T15:58:35Z) - LSD-C: Linearly Separable Deep Clusters [145.89790963544314]
We present LSD-C, a novel method to identify clusters in an unlabeled dataset.
Our method draws inspiration from recent semi-supervised learning practice and proposes to combine our clustering algorithm with self-supervised pretraining and strong data augmentation.
We show that our approach significantly outperforms competitors on popular public image benchmarks including CIFAR 10/100, STL 10 and MNIST, as well as the document classification dataset Reuters 10K.
arXiv Detail & Related papers (2020-06-17T17:58:10Z) - Local Graph Clustering with Network Lasso [90.66817876491052]
We study the statistical and computational properties of a network Lasso method for local graph clustering.
The clusters delivered by nLasso can be characterized elegantly via network flows between cluster boundary and seed nodes.
arXiv Detail & Related papers (2020-04-25T17:52:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.