AIWR: Aerial Image Water Resource Dataset for Segmentation Analysis
- URL: http://arxiv.org/abs/2411.01797v2
- Date: Wed, 06 Nov 2024 03:45:13 GMT
- Title: AIWR: Aerial Image Water Resource Dataset for Segmentation Analysis
- Authors: Sangdaow Noppitak, Emmanuel Okafor, Olarik Surinta,
- Abstract summary: This dataset includes 800 aerial images focused on natural and artificial water bodies in northeastern Thailand.
It includes ground truth annotations validated by experts in remote sensing.
The objective of the proposed dataset is to explore advanced AI-driven methods for water body segmentation.
- Score: 0.0
- License:
- Abstract: Effective water resource management is crucial in agricultural regions like northeastern Thailand, where limited water retention in sandy soils poses significant challenges. In response to this issue, the Aerial Image Water Resource (AIWR) dataset was developed, comprising 800 aerial images focused on natural and artificial water bodies in this region. The dataset was created using Bing Maps and follows the standards of the Fundamental Geographic Data Set (FGDS). It includes ground truth annotations validated by experts in remote sensing, making it an invaluable resource for researchers in geoinformatics, computer vision, and artificial intelligence. The AIWR dataset presents considerable challenges, such as segmentation due to variations in the size, color, shape, and similarity of water bodies, which often resemble other land use categories. The objective of the proposed dataset is to explore advanced AI-driven methods for water body segmentation, addressing the unique challenges posed by the dataset complexity and limited size. This dataset and related research contribute to the development of novel algorithms for water management, supporting sustainable agricultural practices in regions facing similar challenges.
Related papers
- SEN12-WATER: A New Dataset for Hydrological Applications and its Benchmarking [40.996860106131244]
Climate and increasing droughts pose significant challenges to water resource management around the world.
We present a new dataset, SEN12-WATER, along with a benchmark using a end-to-end Deep Learning framework for proactive drought-related analysis.
arXiv Detail & Related papers (2024-09-25T16:50:59Z) - Leveraging Citizen Science for Flood Extent Detection using Machine
Learning Benchmark Dataset [0.9029386959445269]
We create a labeled known water body extent and flooded area extents during known flooding events covering about 36,000 sq. kilometers of regions within mainland U.S and Bangladesh.
We also leveraged citizen science by open-sourcing the dataset and hosting an open competition based on the dataset to rapidly prototype flood extent detection using community generated models.
We believe the dataset adds to already existing datasets based on Sentinel-1C SAR data and leads to more robust modeling of flood extents.
arXiv Detail & Related papers (2023-11-15T18:49:29Z) - GLH-Water: A Large-Scale Dataset for Global Surface Water Detection in
Large-Size Very-High-Resolution Satellite Imagery [2.342488890032597]
We propose the GLH-water dataset that consists of 250 satellite images and manually labeled surface water annotations.
Each image is of the size 12,800 $times$ 12,800 pixels at 0.3 meter spatial resolution.
To build a benchmark for GLH-water, we perform extensive experiments employing representative surface water detection models, popular semantic segmentation models, and ultra-high resolution segmentation models.
arXiv Detail & Related papers (2023-03-16T13:35:56Z) - A General Purpose Neural Architecture for Geospatial Systems [142.43454584836812]
We present a roadmap towards the construction of a general-purpose neural architecture (GPNA) with a geospatial inductive bias.
We envision how such a model may facilitate cooperation between members of the community.
arXiv Detail & Related papers (2022-11-04T09:58:57Z) - Jalisco's multiclass land cover analysis and classification using a
novel lightweight convnet with real-world multispectral and relief data [51.715517570634994]
We present our novel lightweight (only 89k parameters) Convolution Neural Network (ConvNet) to make LC classification and analysis.
In this work, we combine three real-world open data sources to obtain 13 channels.
Our embedded analysis anticipates the limited performance in some classes and gives us the opportunity to group the most similar.
arXiv Detail & Related papers (2022-01-26T14:58:51Z) - Object Detection in Aerial Images: A Large-Scale Benchmark and
Challenges [124.48654341780431]
We present a large-scale dataset of Object deTection in Aerial images (DOTA) and comprehensive baselines for ODAI.
The proposed DOTA dataset contains 1,793,658 object instances of 18 categories of oriented-bounding-box annotations collected from 11,268 aerial images.
We build baselines covering 10 state-of-the-art algorithms with over 70 configurations, where the speed and accuracy performances of each model have been evaluated.
arXiv Detail & Related papers (2021-02-24T11:20:55Z) - Water Level Estimation Using Sentinel-1 Synthetic Aperture Radar Imagery
And Digital Elevation Models [0.0]
We propose a novel water level extracting approach, which employs Sentinel-1 Synthetic Aperture Radar imagery and Digital Elevation Model data sets.
Experiments show that the algorithm achieved a low average error of 0.93 meters over three reservoirs globally.
arXiv Detail & Related papers (2020-12-11T18:42:15Z) - Batch Exploration with Examples for Scalable Robotic Reinforcement
Learning [63.552788688544254]
Batch Exploration with Examples (BEE) explores relevant regions of the state-space guided by a modest number of human provided images of important states.
BEE is able to tackle challenging vision-based manipulation tasks both in simulation and on a real Franka robot.
arXiv Detail & Related papers (2020-10-22T17:49:25Z) - Weakly Supervised Domain Adaptation for Built-up Region Segmentation in
Aerial and Satellite Imagery [3.8508264614798517]
Built-up area estimation is an important component in understanding the human impact on the environment, the effect of public policy, and general urban population analysis.
The diverse nature of aerial and satellite imagery and lack of labeled data covering this diversity makes machine learning algorithms difficult to generalize.
This paper proposes a novel domain adaptation algorithm to handle the challenges posed by the satellite and aerial imagery.
arXiv Detail & Related papers (2020-07-05T10:05:01Z) - A Data Scientist's Guide to Streamflow Prediction [55.22219308265945]
We focus on the element of hydrologic rainfall--runoff models and their application to forecast floods and predict streamflow.
This guide aims to help interested data scientists gain an understanding of the problem, the hydrologic concepts involved, and the details that come up along the way.
arXiv Detail & Related papers (2020-06-05T08:04:37Z) - The 1st Agriculture-Vision Challenge: Methods and Results [144.57794061346974]
The first Agriculture-Vision Challenge aims to encourage research in developing novel and effective algorithms for agricultural pattern recognition from aerial images.
Around 57 participating teams from various countries compete to achieve state-of-the-art in aerial agriculture semantic segmentation.
This paper provides a summary of notable methods and results in the challenge.
arXiv Detail & Related papers (2020-04-21T05:02:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.