Bootstrapping Top-down Information for Self-modulating Slot Attention
- URL: http://arxiv.org/abs/2411.01801v1
- Date: Mon, 04 Nov 2024 05:00:49 GMT
- Title: Bootstrapping Top-down Information for Self-modulating Slot Attention
- Authors: Dongwon Kim, Seoyeon Kim, Suha Kwak,
- Abstract summary: We propose a novel OCL framework incorporating a top-down pathway.
This pathway bootstraps the semantics of individual objects and then modulates the model to prioritize features relevant to these semantics.
Our framework achieves state-of-the-art performance across multiple synthetic and real-world object-discovery benchmarks.
- Score: 29.82550058869251
- License:
- Abstract: Object-centric learning (OCL) aims to learn representations of individual objects within visual scenes without manual supervision, facilitating efficient and effective visual reasoning. Traditional OCL methods primarily employ bottom-up approaches that aggregate homogeneous visual features to represent objects. However, in complex visual environments, these methods often fall short due to the heterogeneous nature of visual features within an object. To address this, we propose a novel OCL framework incorporating a top-down pathway. This pathway first bootstraps the semantics of individual objects and then modulates the model to prioritize features relevant to these semantics. By dynamically modulating the model based on its own output, our top-down pathway enhances the representational quality of objects. Our framework achieves state-of-the-art performance across multiple synthetic and real-world object-discovery benchmarks.
Related papers
- Zero-Shot Object-Centric Representation Learning [72.43369950684057]
We study current object-centric methods through the lens of zero-shot generalization.
We introduce a benchmark comprising eight different synthetic and real-world datasets.
We find that training on diverse real-world images improves transferability to unseen scenarios.
arXiv Detail & Related papers (2024-08-17T10:37:07Z) - Learning Object-Centric Representation via Reverse Hierarchy Guidance [73.05170419085796]
Object-Centric Learning (OCL) seeks to enable Neural Networks to identify individual objects in visual scenes.
RHGNet introduces a top-down pathway that works in different ways in the training and inference processes.
Our model achieves SOTA performance on several commonly used datasets.
arXiv Detail & Related papers (2024-05-17T07:48:27Z) - Mitigating Object Dependencies: Improving Point Cloud Self-Supervised Learning through Object Exchange [50.45953583802282]
We introduce a novel self-supervised learning (SSL) strategy for point cloud scene understanding.
Our approach leverages both object patterns and contextual cues to produce robust features.
Our experiments demonstrate the superiority of our method over existing SSL techniques.
arXiv Detail & Related papers (2024-04-11T06:39:53Z) - LOCATE: Self-supervised Object Discovery via Flow-guided Graph-cut and
Bootstrapped Self-training [13.985488693082981]
We propose a self-supervised object discovery approach that leverages motion and appearance information to produce high-quality object segmentation masks.
We demonstrate the effectiveness of our approach, named LOCATE, on multiple standard video object segmentation, image saliency detection, and object segmentation benchmarks.
arXiv Detail & Related papers (2023-08-22T07:27:09Z) - Weakly-supervised Contrastive Learning for Unsupervised Object Discovery [52.696041556640516]
Unsupervised object discovery is promising due to its ability to discover objects in a generic manner.
We design a semantic-guided self-supervised learning model to extract high-level semantic features from images.
We introduce Principal Component Analysis (PCA) to localize object regions.
arXiv Detail & Related papers (2023-07-07T04:03:48Z) - SOS! Self-supervised Learning Over Sets Of Handled Objects In Egocentric
Action Recognition [35.4163266882568]
We introduce Self-Supervised Learning Over Sets (SOS) to pre-train a generic Objects In Contact (OIC) representation model.
Our OIC significantly boosts the performance of multiple state-of-the-art video classification models.
arXiv Detail & Related papers (2022-04-10T23:27:19Z) - Synthesizing the Unseen for Zero-shot Object Detection [72.38031440014463]
We propose to synthesize visual features for unseen classes, so that the model learns both seen and unseen objects in the visual domain.
We use a novel generative model that uses class-semantics to not only generate the features but also to discriminatively separate them.
arXiv Detail & Related papers (2020-10-19T12:36:11Z) - Look-into-Object: Self-supervised Structure Modeling for Object
Recognition [71.68524003173219]
We propose to "look into object" (explicitly yet intrinsically model the object structure) through incorporating self-supervisions.
We show the recognition backbone can be substantially enhanced for more robust representation learning.
Our approach achieves large performance gain on a number of benchmarks, including generic object recognition (ImageNet) and fine-grained object recognition tasks (CUB, Cars, Aircraft)
arXiv Detail & Related papers (2020-03-31T12:22:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.