Finite temperature fermionic charge and current densities in conical space with a circular edge
- URL: http://arxiv.org/abs/2411.01890v1
- Date: Mon, 04 Nov 2024 08:41:37 GMT
- Title: Finite temperature fermionic charge and current densities in conical space with a circular edge
- Authors: A. A. Saharian, V. F. Manukyan, T. A. Petrosyan,
- Abstract summary: We study the finite temperature and edge induced effects on the charge and current densities for a massive spinor field localized on a 2D conical space threaded by a magnetic flux.
- Score: 0.0
- License:
- Abstract: We study the finite temperature and edge induced effects on the charge and current densities for a massive spinor field localized on a 2D conical space threaded by a magnetic flux. The field operator is constrained on a circular boundary, concentric with the cone apex, by the bag boundary condition and by the condition with the opposite sign in front of the term containing the normal to the edge. In two-dimensional spaces there exist two inequivalent representations of the Clifford algebra and the analysis is presented for both the fields realizing those representations. The circular boundary divides the conical space into two parts, referred as interior (I-) and exterior (E-) regions. The radial current density vanishes. The edge induced contributions in the expectation values of the charge and azimuthal current densities are explicitly separated in the both regions for the general case of the chemical potential. They are periodic functions of the magnetic flux and odd functions under the simultaneous change of the signs of magnetic flux and chemical potential. In the E-region all the spinorial modes are regular and the total charge and current densities are continuous functions of the magnetic flux. In the I-region the corresponding expectation values are discontinuous at half-integer values of the ratio of the magnetic flux to the flux quantum. 2D fermionic models, symmetric under the parity and time-reversal transformations (in the absence of magnetic fields) combine two spinor fields realizing the inequivalent representations of the Clifford algebra. The total charge and current densities in those models are discussed for different combinations of the boundary conditions for separate fields. Applications are discussed for electronic subsystem in graphitic cones described by the 2D Dirac model.
Related papers
- Generalized Gouy Rotation of Electron Vortex beams in uniform magnetic fields [54.010858975226945]
We study the dynamics of EVBs in magnetic fields using exact solutions of the relativistic paraxial equation in magnetic fields.
We provide a unified description of different regimes under generalized Gouy rotation, linking the Gouy phase to EVB rotation angles.
This work offers new insights into the dynamics of EVBs in magnetic fields and suggests practical applications in beam manipulation and beam optics of vortex particles.
arXiv Detail & Related papers (2024-07-03T03:29:56Z) - Quantum electrodynamics of lossy magnetodielectric samples in vacuum: modified Langevin noise formalism [55.2480439325792]
We analytically derive the modified Langevin noise formalism from the established canonical quantization of the electromagnetic field in macroscopic media.
We prove that each of the two field parts can be expressed in term of particular bosonic operators, which in turn diagonalize the electromagnetic Hamiltonian.
arXiv Detail & Related papers (2024-04-07T14:37:04Z) - Dirac materials in parallel non-uniform electromagnetic fields generated
by SUSY: A new class of chiral Planar Hall Effect? [0.0]
We find a nontrivial current density in the same plane where the electric and magnetic fields lie, but perpendicular to both of them.
This density is the sum of current densities for the left- and right-chiralities, suggesting that the net current is a consequence of chiral symmetry.
arXiv Detail & Related papers (2023-06-28T17:48:56Z) - Fermionic condensate and the vacuum energy-momentum tensor for planar fermions in homogeneous electric and magnetic fields [0.0]
We consider a massive fermionic quantum field localized on a plane in external constant and homogeneous electric and magnetic fields.
The complete set of solutions to the Dirac equation is presented.
arXiv Detail & Related papers (2023-06-20T09:18:43Z) - Magnetic catalysis in weakly interacting hyperbolic Dirac materials [0.0]
We show that application of strong external magnetic fields by virtue of producing a emphfinite density of states near the zero energy triggers the condensation of the CDW order even for emphsimal $V$.
We present scaling of the CDW order with the total flux enclosed by hyperbolic Dirac materials for a wide range of (especially subcritical) $V$.
arXiv Detail & Related papers (2023-05-18T17:59:32Z) - Spin Current Density Functional Theory of the Quantum Spin-Hall Phase [59.50307752165016]
We apply the spin current density functional theory to the quantum spin-Hall phase.
We show that the explicit account of spin currents in the electron-electron potential of the SCDFT is key to the appearance of a Dirac cone.
arXiv Detail & Related papers (2022-08-29T20:46:26Z) - Manipulating Generalized Dirac Cones In Quantum Metasurfaces [68.8204255655161]
We consider a collection of single quantum emitters arranged in a honeycomb lattice with subwavelength periodicity.
We show that introducing uniaxial anisotropy in the lattice results in modified dispersion relations.
arXiv Detail & Related papers (2022-03-21T17:59:58Z) - Casimir effect for fermion condensate in conical rings [0.0]
The fermion condensate (FC) is investigated for a massive fermionic field confined on a truncated cone with an arbitrary planar angle deficit and threaded by a magnetic flux.
Different combinations of the boundary conditions are imposed on the edges of the cone.
The FC is investigated in the parity and time-reversal symmetric fermionic models and applications are discussed for graphitic cones.
arXiv Detail & Related papers (2021-02-24T09:23:14Z) - Superradiant phase transition in complex networks [62.997667081978825]
We consider a superradiant phase transition problem for the Dicke-Ising model.
We examine regular, random, and scale-free network structures.
arXiv Detail & Related papers (2020-12-05T17:40:53Z) - Electromagnetic field correlators and the Casimir effect for planar
boundaries in AdS spacetime with application in braneworlds [0.0]
We evaluate the correlators for the vector potential and for the field strength tensor of the electromagnetic field in AdS spacetime.
By using the expressions for the correlators, the vacuum expectation values (VEVs) of the photon condensate and of the electric and magnetic fields squared are investigated.
arXiv Detail & Related papers (2020-09-04T08:52:44Z) - Radiative topological biphoton states in modulated qubit arrays [105.54048699217668]
We study topological properties of bound pairs of photons in spatially-modulated qubit arrays coupled to a waveguide.
For open boundary condition, we find exotic topological bound-pair edge states with radiative losses.
By joining two structures with different spatial modulations, we find long-lived interface states which may have applications in storage and quantum information processing.
arXiv Detail & Related papers (2020-02-24T04:44:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.