Masked Autoencoders are Parameter-Efficient Federated Continual Learners
- URL: http://arxiv.org/abs/2411.01916v3
- Date: Sun, 24 Nov 2024 12:33:12 GMT
- Title: Masked Autoencoders are Parameter-Efficient Federated Continual Learners
- Authors: Yuchen He, Xiangfeng Wang,
- Abstract summary: pMAE learns reconstructive prompt on the client side through image reconstruction using MAE.
It reconstructs the uploaded restore information to capture the data distribution across previous tasks and different clients.
- Score: 6.184711584674839
- License:
- Abstract: Federated learning is a specific distributed learning paradigm in which a central server aggregates updates from multiple clients' local models, thereby enabling the server to learn without requiring clients to upload their private data, maintaining data privacy. While existing federated learning methods are primarily designed for static data, real-world applications often require clients to learn new categories over time. This challenge necessitates the integration of continual learning techniques, leading to federated continual learning (FCL). To address both catastrophic forgetting and non-IID issues, we propose to use masked autoencoders (MAEs) as parameter-efficient federated continual learners, called pMAE. pMAE learns reconstructive prompt on the client side through image reconstruction using MAE. On the server side, it reconstructs the uploaded restore information to capture the data distribution across previous tasks and different clients, using these reconstructed images to fine-tune discriminative prompt and classifier parameters tailored for classification, thereby alleviating catastrophic forgetting and non-IID issues on a global scale. Experimental results demonstrate that pMAE achieves performance comparable to existing prompt-based methods and can enhance their effectiveness, particularly when using self-supervised pre-trained transformers as the backbone. Code is available at: https://github.com/ycheoo/pMAE.
Related papers
- Personalized federated learning based on feature fusion [2.943623084019036]
Federated learning enables distributed clients to collaborate on training while storing their data locally to protect client privacy.
We propose a personalized federated learning approach called pFedPM.
In our process, we replace traditional gradient uploading with feature uploading, which helps reduce communication costs and allows for heterogeneous client models.
arXiv Detail & Related papers (2024-06-24T12:16:51Z) - Federated Face Forgery Detection Learning with Personalized Representation [63.90408023506508]
Deep generator technology can produce high-quality fake videos that are indistinguishable, posing a serious social threat.
Traditional forgery detection methods directly centralized training on data.
The paper proposes a novel federated face forgery detection learning with personalized representation.
arXiv Detail & Related papers (2024-06-17T02:20:30Z) - Blockchain-enabled Trustworthy Federated Unlearning [50.01101423318312]
Federated unlearning is a promising paradigm for protecting the data ownership of distributed clients.
Existing works require central servers to retain the historical model parameters from distributed clients.
This paper proposes a new blockchain-enabled trustworthy federated unlearning framework.
arXiv Detail & Related papers (2024-01-29T07:04:48Z) - Federated Class-Incremental Learning with Prompting [18.52169733483851]
We propose a novel method called Federated Class-Incremental Learning with PrompTing.
We encode the task-relevant and task-irrelevant knowledge into prompts, preserving the old and new knowledge of the local clients.
FCI achieves significant accuracy improvements over the state-of-the-art methods.
arXiv Detail & Related papers (2023-10-13T08:35:02Z) - Subspace based Federated Unlearning [75.90552823500633]
Federated unlearning (FL) aims to remove a specified target client's contribution in FL to satisfy the user's right to be forgotten.
Most existing federated unlearning algorithms require the server to store the history of the parameter updates.
We propose a simple-yet-effective subspace based federated unlearning method, dubbed SFU, that lets the global model perform gradient ascent.
arXiv Detail & Related papers (2023-02-24T04:29:44Z) - Scalable Collaborative Learning via Representation Sharing [53.047460465980144]
Federated learning (FL) and Split Learning (SL) are two frameworks that enable collaborative learning while keeping the data private (on device)
In FL, each data holder trains a model locally and releases it to a central server for aggregation.
In SL, the clients must release individual cut-layer activations (smashed data) to the server and wait for its response (during both inference and back propagation).
In this work, we present a novel approach for privacy-preserving machine learning, where the clients collaborate via online knowledge distillation using a contrastive loss.
arXiv Detail & Related papers (2022-11-20T10:49:22Z) - Meta Knowledge Condensation for Federated Learning [65.20774786251683]
Existing federated learning paradigms usually extensively exchange distributed models at a central solver to achieve a more powerful model.
This would incur severe communication burden between a server and multiple clients especially when data distributions are heterogeneous.
Unlike existing paradigms, we introduce an alternative perspective to significantly decrease the communication cost in federate learning.
arXiv Detail & Related papers (2022-09-29T15:07:37Z) - Federated Unlearning: How to Efficiently Erase a Client in FL? [9.346673106489742]
We propose a method to erase a client by removing the influence of their entire local data from the trained global model.
Our unlearning method achieves comparable performance as the gold standard unlearning method of federated retraining from scratch.
Unlike prior works, our unlearning method neither requires global access to the data used for training nor the history of the parameter updates to be stored by the server or any of the clients.
arXiv Detail & Related papers (2022-07-12T13:24:23Z) - Federated Learning with Taskonomy for Non-IID Data [0.0]
We introduce federated learning with taskonomy.
In a one-off process, the server provides the clients with a pretrained (and fine-tunable) encoder to compress their data into a latent representation, and transmit the signature of their data back to the server.
The server then learns the task-relatedness among clients via manifold learning, and performs a generalization of federated averaging.
arXiv Detail & Related papers (2021-03-29T20:47:45Z) - Exploiting Shared Representations for Personalized Federated Learning [54.65133770989836]
We propose a novel federated learning framework and algorithm for learning a shared data representation across clients and unique local heads for each client.
Our algorithm harnesses the distributed computational power across clients to perform many local-updates with respect to the low-dimensional local parameters for every update of the representation.
This result is of interest beyond federated learning to a broad class of problems in which we aim to learn a shared low-dimensional representation among data distributions.
arXiv Detail & Related papers (2021-02-14T05:36:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.