Typicalness-Aware Learning for Failure Detection
- URL: http://arxiv.org/abs/2411.01981v2
- Date: Thu, 07 Nov 2024 04:10:10 GMT
- Title: Typicalness-Aware Learning for Failure Detection
- Authors: Yijun Liu, Jiequan Cui, Zhuotao Tian, Senqiao Yang, Qingdong He, Xiaoling Wang, Jingyong Su,
- Abstract summary: Deep neural networks (DNNs) often suffer from the overconfidence issue, where incorrect predictions are made with high confidence scores.
We propose a novel approach called Typicalness-Aware Learning (TAL) to address this issue and improve failure detection performance.
- Score: 26.23185979968123
- License:
- Abstract: Deep neural networks (DNNs) often suffer from the overconfidence issue, where incorrect predictions are made with high confidence scores, hindering the applications in critical systems. In this paper, we propose a novel approach called Typicalness-Aware Learning (TAL) to address this issue and improve failure detection performance. We observe that, with the cross-entropy loss, model predictions are optimized to align with the corresponding labels via increasing logit magnitude or refining logit direction. However, regarding atypical samples, the image content and their labels may exhibit disparities. This discrepancy can lead to overfitting on atypical samples, ultimately resulting in the overconfidence issue that we aim to address. To tackle the problem, we have devised a metric that quantifies the typicalness of each sample, enabling the dynamic adjustment of the logit magnitude during the training process. By allowing atypical samples to be adequately fitted while preserving reliable logit direction, the problem of overconfidence can be mitigated. TAL has been extensively evaluated on benchmark datasets, and the results demonstrate its superiority over existing failure detection methods. Specifically, TAL achieves a more than 5% improvement on CIFAR100 in terms of the Area Under the Risk-Coverage Curve (AURC) compared to the state-of-the-art. Code is available at https://github.com/liuyijungoon/TAL.
Related papers
- Adversarial Robustness Overestimation and Instability in TRADES [4.063518154926961]
TRADES sometimes yields disproportionately high PGD validation accuracy compared to the AutoAttack testing accuracy in the multiclass classification task.
This discrepancy highlights a significant overestimation of robustness for these instances, potentially linked to gradient masking.
arXiv Detail & Related papers (2024-10-10T07:32:40Z) - Towards Robust and Interpretable EMG-based Hand Gesture Recognition using Deep Metric Meta Learning [37.21211404608413]
We propose a shift to deep metric-based meta-learning in EMG PR to supervise the creation of meaningful and interpretable representations.
We derive a robust class proximity-based confidence estimator that leads to a better rejection of incorrect decisions.
arXiv Detail & Related papers (2024-04-17T23:37:50Z) - Revisiting Confidence Estimation: Towards Reliable Failure Prediction [53.79160907725975]
We find a general, widely existing but actually-neglected phenomenon that most confidence estimation methods are harmful for detecting misclassification errors.
We propose to enlarge the confidence gap by finding flat minima, which yields state-of-the-art failure prediction performance.
arXiv Detail & Related papers (2024-03-05T11:44:14Z) - Selective Learning: Towards Robust Calibration with Dynamic Regularization [79.92633587914659]
Miscalibration in deep learning refers to there is a discrepancy between the predicted confidence and performance.
We introduce Dynamic Regularization (DReg) which aims to learn what should be learned during training thereby circumventing the confidence adjusting trade-off.
arXiv Detail & Related papers (2024-02-13T11:25:20Z) - Bridging Precision and Confidence: A Train-Time Loss for Calibrating
Object Detection [58.789823426981044]
We propose a novel auxiliary loss formulation that aims to align the class confidence of bounding boxes with the accurateness of predictions.
Our results reveal that our train-time loss surpasses strong calibration baselines in reducing calibration error for both in and out-domain scenarios.
arXiv Detail & Related papers (2023-03-25T08:56:21Z) - Calibrating Deep Neural Networks using Explicit Regularisation and
Dynamic Data Pruning [25.982037837953268]
Deep neural networks (DNN) are prone to miscalibrated predictions, often exhibiting a mismatch between the predicted output and the associated confidence scores.
We propose a novel regularization technique that can be used with classification losses, leading to state-of-the-art calibrated predictions at test time.
arXiv Detail & Related papers (2022-12-20T05:34:58Z) - Improving Uncertainty Calibration via Prior Augmented Data [56.88185136509654]
Neural networks have proven successful at learning from complex data distributions by acting as universal function approximators.
They are often overconfident in their predictions, which leads to inaccurate and miscalibrated probabilistic predictions.
We propose a solution by seeking out regions of feature space where the model is unjustifiably overconfident, and conditionally raising the entropy of those predictions towards that of the prior distribution of the labels.
arXiv Detail & Related papers (2021-02-22T07:02:37Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
We develop an approximate Bayesian inference scheme based on posterior regularisation.
We demonstrate the utility of our method in the context of transferring prognostic models of prostate cancer across globally diverse populations.
arXiv Detail & Related papers (2020-06-26T13:50:19Z) - Uncertainty Estimation Using a Single Deep Deterministic Neural Network [66.26231423824089]
We propose a method for training a deterministic deep model that can find and reject out of distribution data points at test time with a single forward pass.
We scale training in these with a novel loss function and centroid updating scheme and match the accuracy of softmax models.
arXiv Detail & Related papers (2020-03-04T12:27:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.