A Study of Data Augmentation Techniques to Overcome Data Scarcity in Wound Classification using Deep Learning
- URL: http://arxiv.org/abs/2411.02456v1
- Date: Mon, 04 Nov 2024 00:24:50 GMT
- Title: A Study of Data Augmentation Techniques to Overcome Data Scarcity in Wound Classification using Deep Learning
- Authors: Harini Narayanan, Sindhu Ghanta,
- Abstract summary: We show that data augmentation can improve classification performance, F1 scores, by up to 11% on top of state-of-the-art models.
Our experiments with GAN based augmentation prove the viability of using DE-GANs to generate wound images with richer variations.
- Score: 0.0
- License:
- Abstract: Chronic wounds are a significant burden on individuals and the healthcare system, affecting millions of people and incurring high costs. Wound classification using deep learning techniques is a promising approach for faster diagnosis and treatment initiation. However, lack of high quality data to train the ML models is a major challenge to realize the potential of ML in wound care. In fact, data limitations are the biggest challenge in studies using medical or forensic imaging today. We study data augmentation techniques that can be used to overcome the data scarcity limitations and unlock the potential of deep learning based solutions. In our study we explore a range of data augmentation techniques from geometric transformations of wound images to advanced GANs, to enrich and expand datasets. Using the Keras, Tensorflow, and Pandas libraries, we implemented the data augmentation techniques that can generate realistic wound images. We show that geometric data augmentation can improve classification performance, F1 scores, by up to 11% on top of state-of-the-art models, across several key classes of wounds. Our experiments with GAN based augmentation prove the viability of using DE-GANs to generate wound images with richer variations. Our study and results show that data augmentation is a valuable privacy-preserving tool with huge potential to overcome the data scarcity limitations and we believe it will be part of any real-world ML-based wound care system.
Related papers
- Improving Deep Learning-based Automatic Cranial Defect Reconstruction by Heavy Data Augmentation: From Image Registration to Latent Diffusion Models [0.2911706166691895]
The work is a considerable contribution to the field of artificial intelligence in the automatic modeling of personalized cranial implants.
We show that the use of heavy data augmentation significantly increases both the quantitative and qualitative outcomes.
We also show that the synthetically augmented network successfully reconstructs real clinical defects.
arXiv Detail & Related papers (2024-06-10T15:34:23Z) - Amplifying Pathological Detection in EEG Signaling Pathways through
Cross-Dataset Transfer Learning [10.212217551908525]
We study the effectiveness of data and model scaling and cross-dataset knowledge transfer in a real-world pathology classification task.
We identify the challenges of possible negative transfer and emphasize the significance of some key components.
Our findings indicate a small and generic model (e.g. ShallowNet) performs well on a single dataset, however, a larger model (e.g. TCN) performs better on transfer and learning from a larger and diverse dataset.
arXiv Detail & Related papers (2023-09-19T20:09:15Z) - The effect of data augmentation and 3D-CNN depth on Alzheimer's Disease
detection [51.697248252191265]
This work summarizes and strictly observes best practices regarding data handling, experimental design, and model evaluation.
We focus on Alzheimer's Disease (AD) detection, which serves as a paradigmatic example of challenging problem in healthcare.
Within this framework, we train predictive 15 models, considering three different data augmentation strategies and five distinct 3D CNN architectures.
arXiv Detail & Related papers (2023-09-13T10:40:41Z) - Performance of GAN-based augmentation for deep learning COVID-19 image
classification [57.1795052451257]
The biggest challenge in the application of deep learning to the medical domain is the availability of training data.
Data augmentation is a typical methodology used in machine learning when confronted with a limited data set.
In this work, a StyleGAN2-ADA model of Generative Adversarial Networks is trained on the limited COVID-19 chest X-ray image set.
arXiv Detail & Related papers (2023-04-18T15:39:58Z) - Diffusion-based Data Augmentation for Skin Disease Classification:
Impact Across Original Medical Datasets to Fully Synthetic Images [2.5075774184834803]
Deep neural networks still rely on large amounts of training data to avoid overfitting.
Labeled training data for real-world applications such as healthcare is limited and difficult to access.
We build upon the emerging success of text-to-image diffusion probabilistic models in augmenting the training samples of our macroscopic skin disease dataset.
arXiv Detail & Related papers (2023-01-12T04:22:23Z) - Advanced Data Augmentation Approaches: A Comprehensive Survey and Future
directions [57.30984060215482]
We provide a background of data augmentation, a novel and comprehensive taxonomy of reviewed data augmentation techniques, and the strengths and weaknesses (wherever possible) of each technique.
We also provide comprehensive results of the data augmentation effect on three popular computer vision tasks, such as image classification, object detection and semantic segmentation.
arXiv Detail & Related papers (2023-01-07T11:37:32Z) - Local Magnification for Data and Feature Augmentation [53.04028225837681]
We propose an easy-to-implement and model-free data augmentation method called Local Magnification (LOMA)
LOMA generates additional training data by randomly magnifying a local area of the image.
Experiments show that our proposed LOMA, though straightforward, can be combined with standard data augmentation to significantly improve the performance on image classification and object detection.
arXiv Detail & Related papers (2022-11-15T02:51:59Z) - Improved Techniques for the Conditional Generative Augmentation of
Clinical Audio Data [36.45569352490318]
We propose a conditional generative adversarial neural network-based augmentation method which is able to synthesize mel spectrograms from a learned data distribution.
We show that our method outperforms all classical audio augmentation techniques and previously published generative methods in terms of generated sample quality.
The proposed model advances the state-of-the-art in the augmentation of clinical audio data and improves the data bottleneck for the design of clinical acoustic sensing systems.
arXiv Detail & Related papers (2022-11-05T10:58:04Z) - Random Data Augmentation based Enhancement: A Generalized Enhancement
Approach for Medical Datasets [8.844562557753399]
This paper develops a generalized, data-independent and computationally efficient enhancement approach to improve medical data quality for DL.
The quality is enhanced by improving the brightness and contrast of images.
Experiments have been performed with: COVID-19 chest X-ray, KiTS19, and for RGB imagery with: LC25000 datasets.
arXiv Detail & Related papers (2022-10-03T11:16:22Z) - Dissecting Self-Supervised Learning Methods for Surgical Computer Vision [51.370873913181605]
Self-Supervised Learning (SSL) methods have begun to gain traction in the general computer vision community.
The effectiveness of SSL methods in more complex and impactful domains, such as medicine and surgery, remains limited and unexplored.
We present an extensive analysis of the performance of these methods on the Cholec80 dataset for two fundamental and popular tasks in surgical context understanding, phase recognition and tool presence detection.
arXiv Detail & Related papers (2022-07-01T14:17:11Z) - When Accuracy Meets Privacy: Two-Stage Federated Transfer Learning
Framework in Classification of Medical Images on Limited Data: A COVID-19
Case Study [77.34726150561087]
COVID-19 pandemic has spread rapidly and caused a shortage of global medical resources.
CNN has been widely utilized and verified in analyzing medical images.
arXiv Detail & Related papers (2022-03-24T02:09:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.