Digitizing Touch with an Artificial Multimodal Fingertip
- URL: http://arxiv.org/abs/2411.02479v1
- Date: Mon, 04 Nov 2024 18:38:50 GMT
- Title: Digitizing Touch with an Artificial Multimodal Fingertip
- Authors: Mike Lambeta, Tingfan Wu, Ali Sengul, Victoria Rose Most, Nolan Black, Kevin Sawyer, Romeo Mercado, Haozhi Qi, Alexander Sohn, Byron Taylor, Norb Tydingco, Gregg Kammerer, Dave Stroud, Jake Khatha, Kurt Jenkins, Kyle Most, Neal Stein, Ricardo Chavira, Thomas Craven-Bartle, Eric Sanchez, Yitian Ding, Jitendra Malik, Roberto Calandra,
- Abstract summary: Humans and robots both benefit from using touch to perceive and interact with the surrounding environment.
Here, we describe several conceptual and technological innovations to improve the digitization of touch.
These advances are embodied in an artificial finger-shaped sensor with advanced sensing capabilities.
- Score: 51.7029315337739
- License:
- Abstract: Touch is a crucial sensing modality that provides rich information about object properties and interactions with the physical environment. Humans and robots both benefit from using touch to perceive and interact with the surrounding environment (Johansson and Flanagan, 2009; Li et al., 2020; Calandra et al., 2017). However, no existing systems provide rich, multi-modal digital touch-sensing capabilities through a hemispherical compliant embodiment. Here, we describe several conceptual and technological innovations to improve the digitization of touch. These advances are embodied in an artificial finger-shaped sensor with advanced sensing capabilities. Significantly, this fingertip contains high-resolution sensors (~8.3 million taxels) that respond to omnidirectional touch, capture multi-modal signals, and use on-device artificial intelligence to process the data in real time. Evaluations show that the artificial fingertip can resolve spatial features as small as 7 um, sense normal and shear forces with a resolution of 1.01 mN and 1.27 mN, respectively, perceive vibrations up to 10 kHz, sense heat, and even sense odor. Furthermore, it embeds an on-device AI neural network accelerator that acts as a peripheral nervous system on a robot and mimics the reflex arc found in humans. These results demonstrate the possibility of digitizing touch with superhuman performance. The implications are profound, and we anticipate potential applications in robotics (industrial, medical, agricultural, and consumer-level), virtual reality and telepresence, prosthetics, and e-commerce. Toward digitizing touch at scale, we open-source a modular platform to facilitate future research on the nature of touch.
Related papers
- DexTouch: Learning to Seek and Manipulate Objects with Tactile Dexterity [12.508332341279177]
We introduce a multi-finger robot system designed to search for and manipulate objects using the sense of touch.
To achieve this, binary tactile sensors are implemented on one side of the robot hand to minimize the Sim2Real gap.
We demonstrate that object search and manipulation using tactile sensors is possible even in an environment without vision information.
arXiv Detail & Related papers (2024-01-23T05:37:32Z) - Neural feels with neural fields: Visuo-tactile perception for in-hand
manipulation [57.60490773016364]
We combine vision and touch sensing on a multi-fingered hand to estimate an object's pose and shape during in-hand manipulation.
Our method, NeuralFeels, encodes object geometry by learning a neural field online and jointly tracks it by optimizing a pose graph problem.
Our results demonstrate that touch, at the very least, refines and, at the very best, disambiguates visual estimates during in-hand manipulation.
arXiv Detail & Related papers (2023-12-20T22:36:37Z) - Robot Synesthesia: In-Hand Manipulation with Visuotactile Sensing [15.970078821894758]
We introduce a system that leverages visual and tactile sensory inputs to enable dexterous in-hand manipulation.
Robot Synesthesia is a novel point cloud-based tactile representation inspired by human tactile-visual synesthesia.
arXiv Detail & Related papers (2023-12-04T12:35:43Z) - Tactile-Filter: Interactive Tactile Perception for Part Mating [54.46221808805662]
Humans rely on touch and tactile sensing for a lot of dexterous manipulation tasks.
vision-based tactile sensors are being widely used for various robotic perception and control tasks.
We present a method for interactive perception using vision-based tactile sensors for a part mating task.
arXiv Detail & Related papers (2023-03-10T16:27:37Z) - See, Hear, and Feel: Smart Sensory Fusion for Robotic Manipulation [49.925499720323806]
We study how visual, auditory, and tactile perception can jointly help robots to solve complex manipulation tasks.
We build a robot system that can see with a camera, hear with a contact microphone, and feel with a vision-based tactile sensor.
arXiv Detail & Related papers (2022-12-07T18:55:53Z) - Elastic Tactile Simulation Towards Tactile-Visual Perception [58.44106915440858]
We propose Elastic Interaction of Particles (EIP) for tactile simulation.
EIP models the tactile sensor as a group of coordinated particles, and the elastic property is applied to regulate the deformation of particles during contact.
We further propose a tactile-visual perception network that enables information fusion between tactile data and visual images.
arXiv Detail & Related papers (2021-08-11T03:49:59Z) - A toolbox for neuromorphic sensing in robotics [4.157415305926584]
We introduce a ROS (Robot Operating System) toolbox to encode and decode input signals coming from any type of sensor available on a robot.
This initiative is meant to stimulate and facilitate robotic integration of neuromorphic AI.
arXiv Detail & Related papers (2021-03-03T23:22:05Z) - DIGIT: A Novel Design for a Low-Cost Compact High-Resolution Tactile
Sensor with Application to In-Hand Manipulation [16.54834671357377]
General purpose in-hand manipulation remains one of the unsolved challenges of robotics.
We introduce DIGIT, an inexpensive, compact, and high-resolution tactile sensor geared towards in-hand manipulation.
arXiv Detail & Related papers (2020-05-29T17:07:54Z) - OmniTact: A Multi-Directional High Resolution Touch Sensor [109.28703530853542]
Existing tactile sensors are either flat, have small sensitive fields or only provide low-resolution signals.
We introduce OmniTact, a multi-directional high-resolution tactile sensor.
We evaluate the capabilities of OmniTact on a challenging robotic control task.
arXiv Detail & Related papers (2020-03-16T01:31:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.