Distributionally Robust Optimization
- URL: http://arxiv.org/abs/2411.02549v1
- Date: Mon, 04 Nov 2024 19:32:24 GMT
- Title: Distributionally Robust Optimization
- Authors: Daniel Kuhn, Soroosh Shafiee, Wolfram Wiesemann,
- Abstract summary: DRO studies decision problems under uncertainty where the probability distribution governing the uncertain problem parameters is itself uncertain.
DRO seeks decisions that perform best under the worst distribution in the ambiguity set.
Recent research has uncovered its deep connections to regularization techniques and adversarial training in machine learning.
- Score: 8.750805813120898
- License:
- Abstract: Distributionally robust optimization (DRO) studies decision problems under uncertainty where the probability distribution governing the uncertain problem parameters is itself uncertain. A key component of any DRO model is its ambiguity set, that is, a family of probability distributions consistent with any available structural or statistical information. DRO seeks decisions that perform best under the worst distribution in the ambiguity set. This worst case criterion is supported by findings in psychology and neuroscience, which indicate that many decision-makers have a low tolerance for distributional ambiguity. DRO is rooted in statistics, operations research and control theory, and recent research has uncovered its deep connections to regularization techniques and adversarial training in machine learning. This survey presents the key findings of the field in a unified and self-contained manner.
Related papers
- Federated Distributionally Robust Optimization with Non-Convex
Objectives: Algorithm and Analysis [24.64654924173679]
Asynchronous distributed algorithm named Asynchronous Single-looP alternatIve gRadient projEction is proposed.
New uncertainty set, i.e., constrained D-norm uncertainty set, is developed to leverage the prior distribution and flexibly control the degree of robustness.
empirical studies on real-world datasets demonstrate that the proposed method can not only achieve fast convergence, but also remain robust against data as well as malicious attacks.
arXiv Detail & Related papers (2023-07-25T01:56:57Z) - Modeling the Q-Diversity in a Min-max Play Game for Robust Optimization [61.39201891894024]
Group distributionally robust optimization (group DRO) can minimize the worst-case loss over pre-defined groups.
We reformulate the group DRO framework by proposing Q-Diversity.
Characterized by an interactive training mode, Q-Diversity relaxes the group identification from annotation into direct parameterization.
arXiv Detail & Related papers (2023-05-20T07:02:27Z) - Learning Against Distributional Uncertainty: On the Trade-off Between
Robustness and Specificity [24.874664446700272]
This paper studies a new framework that unifies the three approaches and that addresses the two challenges mentioned above.
The properties (e.g., consistency and normalities), non-asymptotic properties (e.g., unbiasedness and error bound), and a Monte-Carlo-based solution method of the proposed model are studied.
arXiv Detail & Related papers (2023-01-31T11:33:18Z) - Distributed Distributionally Robust Optimization with Non-Convex
Objectives [24.64654924173679]
Asynchronous distributed algorithm named Asynchronous Single-looP alternatIve gRadient projEction is proposed.
New uncertainty set, i.e., constrained D-norm uncertainty set, is developed to leverage the prior distribution and flexibly control the degree of robustness.
empirical studies on real-world datasets demonstrate that the proposed method can not only achieve fast convergence, but also remain robust against data as well as malicious attacks.
arXiv Detail & Related papers (2022-10-14T07:39:13Z) - Federated Distributionally Robust Optimization for Phase Configuration
of RISs [106.4688072667105]
We study the problem of robust reconfigurable intelligent surface (RIS)-aided downlink communication over heterogeneous RIS types in a supervised learning setting.
By modeling downlink communication over heterogeneous RIS designs as different workers that learn how to optimize phase configurations in a distributed manner, we solve this distributed learning problem.
Our proposed algorithm requires fewer communication rounds to achieve the same worst-case distribution test accuracy compared to competitive baselines.
arXiv Detail & Related papers (2021-08-20T07:07:45Z) - Complexity-Free Generalization via Distributionally Robust Optimization [4.313143197674466]
We present an alternate route to obtain generalization bounds on the solution from distributionally robust optimization (DRO)
Our DRO bounds depend on the ambiguity set geometry and its compatibility with the true loss function.
Notably, when using maximum mean discrepancy as a DRO distance metric, our analysis implies, to the best of our knowledge, the first generalization bound in the literature that depends solely on the true loss function.
arXiv Detail & Related papers (2021-06-21T15:19:52Z) - Examining and Combating Spurious Features under Distribution Shift [94.31956965507085]
We define and analyze robust and spurious representations using the information-theoretic concept of minimal sufficient statistics.
We prove that even when there is only bias of the input distribution, models can still pick up spurious features from their training data.
Inspired by our analysis, we demonstrate that group DRO can fail when groups do not directly account for various spurious correlations.
arXiv Detail & Related papers (2021-06-14T05:39:09Z) - DORO: Distributional and Outlier Robust Optimization [98.44757325531631]
We propose the framework of DORO, for Distributional and Outlier Robust Optimization.
At the core of this approach is a refined risk function which prevents DRO from overfitting to potential outliers.
We theoretically prove the effectiveness of the proposed method, and empirically show that DORO improves the performance and stability of DRO with experiments on large modern datasets.
arXiv Detail & Related papers (2021-06-11T02:59:54Z) - Modeling the Second Player in Distributionally Robust Optimization [90.25995710696425]
We argue for the use of neural generative models to characterize the worst-case distribution.
This approach poses a number of implementation and optimization challenges.
We find that the proposed approach yields models that are more robust than comparable baselines.
arXiv Detail & Related papers (2021-03-18T14:26:26Z) - Distributional Robustness and Regularization in Reinforcement Learning [62.23012916708608]
We introduce a new regularizer for empirical value functions and show that it lower bounds the Wasserstein distributionally robust value function.
It suggests using regularization as a practical tool for dealing with $textitexternal uncertainty$ in reinforcement learning.
arXiv Detail & Related papers (2020-03-05T19:56:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.