Social Support Detection from Social Media Texts
- URL: http://arxiv.org/abs/2411.02580v1
- Date: Mon, 04 Nov 2024 20:23:03 GMT
- Title: Social Support Detection from Social Media Texts
- Authors: Zahra Ahani, Moein Shahiki Tash, Fazlourrahman Balouchzahi, Luis Ramos, Grigori Sidorov, Alexander Gelbukh,
- Abstract summary: Social support, conveyed through a multitude of interactions and platforms such as social media, plays a pivotal role in fostering a sense of belonging.
This paper introduces Social Support Detection (SSD) as a Natural language processing (NLP) task aimed at identifying supportive interactions.
We conducted experiments on a dataset comprising 10,000 YouTube comments.
- Score: 44.096359084699
- License:
- Abstract: Social support, conveyed through a multitude of interactions and platforms such as social media, plays a pivotal role in fostering a sense of belonging, aiding resilience in the face of challenges, and enhancing overall well-being. This paper introduces Social Support Detection (SSD) as a Natural language processing (NLP) task aimed at identifying supportive interactions within online communities. The study presents the task of Social Support Detection (SSD) in three subtasks: two binary classification tasks and one multiclass task, with labels detailed in the dataset section. We conducted experiments on a dataset comprising 10,000 YouTube comments. Traditional machine learning models were employed, utilizing various feature combinations that encompass linguistic, psycholinguistic, emotional, and sentiment information. Additionally, we experimented with neural network-based models using various word embeddings to enhance the performance of our models across these subtasks.The results reveal a prevalence of group-oriented support in online dialogues, reflecting broader societal patterns. The findings demonstrate the effectiveness of integrating psycholinguistic, emotional, and sentiment features with n-grams in detecting social support and distinguishing whether it is directed toward an individual or a group. The best results for different subtasks across all experiments range from 0.72 to 0.82.
Related papers
- Loose Social-Interaction Recognition in Real-world Therapy Scenarios [10.088521986304976]
We propose a novel dual-path architecture to capture the loose interaction between two individuals.
Our model learns global abstract features from each stream via a CNNs backbone and fuses them using a new Global-Layer-Attention module.
We evaluate our model on real-world autism diagnoses such as our Loose-Interaction dataset, and the publicly available Autism dataset for loose interactions.
arXiv Detail & Related papers (2024-09-30T13:11:14Z) - Nonverbal Interaction Detection [83.40522919429337]
This work addresses a new challenge of understanding human nonverbal interaction in social contexts.
We contribute a novel large-scale dataset, called NVI, which is meticulously annotated to include bounding boxes for humans and corresponding social groups.
Second, we establish a new task NVI-DET for nonverbal interaction detection, which is formalized as identifying triplets in the form individual, group, interaction> from images.
Third, we propose a nonverbal interaction detection hypergraph (NVI-DEHR), a new approach that explicitly models high-order nonverbal interactions using hypergraphs.
arXiv Detail & Related papers (2024-07-11T02:14:06Z) - SocialBench: Sociality Evaluation of Role-Playing Conversational Agents [85.6641890712617]
Large language models (LLMs) have advanced the development of various AI conversational agents.
SocialBench is the first benchmark designed to evaluate the sociality of role-playing conversational agents at both individual and group levels.
We find that agents excelling in individual level does not imply their proficiency in group level.
arXiv Detail & Related papers (2024-03-20T15:38:36Z) - Self-supervised Hypergraph Representation Learning for Sociological
Analysis [52.514283292498405]
We propose a fundamental methodology to support the further fusion of data mining techniques and sociological behavioral criteria.
First, we propose an effective hypergraph awareness and a fast line graph construction framework.
Second, we propose a novel hypergraph-based neural network to learn social influence flowing from users to users.
arXiv Detail & Related papers (2022-12-22T01:20:29Z) - Bodily Behaviors in Social Interaction: Novel Annotations and
State-of-the-Art Evaluation [0.0]
We present BBSI, the first set of annotations of complex Bodily Behaviors embedded in continuous Social Interactions.
Based on previous work in psychology, we manually annotated 26 hours of spontaneous human behavior.
We adapt the Pyramid Dilated Attention Network (PDAN), a state-of-the-art approach for human action detection.
arXiv Detail & Related papers (2022-07-26T11:24:00Z) - Co-Located Human-Human Interaction Analysis using Nonverbal Cues: A
Survey [71.43956423427397]
We aim to identify the nonverbal cues and computational methodologies resulting in effective performance.
This survey differs from its counterparts by involving the widest spectrum of social phenomena and interaction settings.
Some major observations are: the most often used nonverbal cue, computational method, interaction environment, and sensing approach are speaking activity, support vector machines, and meetings composed of 3-4 persons equipped with microphones and cameras, respectively.
arXiv Detail & Related papers (2022-07-20T13:37:57Z) - Self-supervised Social Relation Representation for Human Group Detection [18.38523753680367]
We propose a new two-stage multi-head framework for human group detection.
In the first stage, we propose a human behavior simulator head to learn the social relation feature embedding.
In the second stage, based on the social relation embedding, we develop a self-attention inspired network for human group detection.
arXiv Detail & Related papers (2022-03-08T04:26:07Z) - Two-Faced Humans on Twitter and Facebook: Harvesting Social Multimedia
for Human Personality Profiling [74.83957286553924]
We infer the Myers-Briggs Personality Type indicators by applying a novel multi-view fusion framework, called "PERS"
Our experimental results demonstrate the PERS's ability to learn from multi-view data for personality profiling by efficiently leveraging on the significantly different data arriving from diverse social multimedia sources.
arXiv Detail & Related papers (2021-06-20T10:48:49Z) - Beyond Social Media Analytics: Understanding Human Behaviour and Deep
Emotion using Self Structuring Incremental Machine Learning [1.2487990897680423]
This thesis develops a conceptual framework considering social data as representing the surface layer of a hierarchy of human social behaviours, needs and cognition.
Two platforms were built to capture insights from fast-paced and slow-paced social data.
arXiv Detail & Related papers (2020-09-05T14:53:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.