Classifier Chain Networks for Multi-Label Classification
- URL: http://arxiv.org/abs/2411.02638v1
- Date: Mon, 04 Nov 2024 21:56:13 GMT
- Title: Classifier Chain Networks for Multi-Label Classification
- Authors: Daniel J. W. Touw, Michel van de Velden,
- Abstract summary: The classifier chain is a widely used method for analyzing multi-labeled data sets.
We introduce a generalization of the chain: the classifier chain network.
- Score: 0.0
- License:
- Abstract: The classifier chain is a widely used method for analyzing multi-labeled data sets. In this study, we introduce a generalization of the classifier chain: the classifier chain network. The classifier chain network enables joint estimation of model parameters, and allows to account for the influence of earlier label predictions on subsequent classifiers in the chain. Through simulations, we evaluate the classifier chain network's performance against multiple benchmark methods, demonstrating competitive results even in scenarios that deviate from its modeling assumptions. Furthermore, we propose a new measure for detecting conditional dependencies between labels and illustrate the classifier chain network's effectiveness using an empirical data set.
Related papers
- Retrieval-Augmented Classification with Decoupled Representation [31.662843145399044]
We propose a $k$-nearest-neighbor (KNN)-based method for retrieval augmented classifications.
We find that shared representation for classification and retrieval hurts performance and leads to training instability.
We evaluate our method on a wide range of classification datasets.
arXiv Detail & Related papers (2023-03-23T06:33:06Z) - Anomaly Detection using Ensemble Classification and Evidence Theory [62.997667081978825]
We present a novel approach for novel detection using ensemble classification and evidence theory.
A pool selection strategy is presented to build a solid ensemble classifier.
We use uncertainty for the anomaly detection approach.
arXiv Detail & Related papers (2022-12-23T00:50:41Z) - Parametric Classification for Generalized Category Discovery: A Baseline
Study [70.73212959385387]
Generalized Category Discovery (GCD) aims to discover novel categories in unlabelled datasets using knowledge learned from labelled samples.
We investigate the failure of parametric classifiers, verify the effectiveness of previous design choices when high-quality supervision is available, and identify unreliable pseudo-labels as a key problem.
We propose a simple yet effective parametric classification method that benefits from entropy regularisation, achieves state-of-the-art performance on multiple GCD benchmarks and shows strong robustness to unknown class numbers.
arXiv Detail & Related papers (2022-11-21T18:47:11Z) - Using Representation Expressiveness and Learnability to Evaluate
Self-Supervised Learning Methods [61.49061000562676]
We introduce Cluster Learnability (CL) to assess learnability.
CL is measured in terms of the performance of a KNN trained to predict labels obtained by clustering the representations with K-means.
We find that CL better correlates with in-distribution model performance than other competing recent evaluation schemes.
arXiv Detail & Related papers (2022-06-02T19:05:13Z) - A Three-phase Augmented Classifiers Chain Approach Based on
Co-occurrence Analysis for Multi-Label Classification [0.0]
existing Chains methods are difficult to model and exploit the underlying dependency in the label space.
We present a three-phase augmented Chain approach based on co-occurrence analysis for multilabel classification.
arXiv Detail & Related papers (2022-04-13T02:10:14Z) - Self-Certifying Classification by Linearized Deep Assignment [65.0100925582087]
We propose a novel class of deep predictors for classifying metric data on graphs within PAC-Bayes risk certification paradigm.
Building on the recent PAC-Bayes literature and data-dependent priors, this approach enables learning posterior distributions on the hypothesis space.
arXiv Detail & Related papers (2022-01-26T19:59:14Z) - Visualizing Classifier Adjacency Relations: A Case Study in Speaker
Verification and Voice Anti-Spoofing [72.4445825335561]
We propose a simple method to derive 2D representation from detection scores produced by an arbitrary set of binary classifiers.
Based upon rank correlations, our method facilitates a visual comparison of classifiers with arbitrary scores.
While the approach is fully versatile and can be applied to any detection task, we demonstrate the method using scores produced by automatic speaker verification and voice anti-spoofing systems.
arXiv Detail & Related papers (2021-06-11T13:03:33Z) - GAN for Vision, KG for Relation: a Two-stage Deep Network for Zero-shot
Action Recognition [33.23662792742078]
We propose a two-stage deep neural network for zero-shot action recognition.
In the sampling stage, we utilize a generative adversarial networks (GAN) trained by action features and word vectors of seen classes.
In the classification stage, we construct a knowledge graph based on the relationship between word vectors of action classes and related objects.
arXiv Detail & Related papers (2021-05-25T09:34:42Z) - A Multiple Classifier Approach for Concatenate-Designed Neural Networks [13.017053017670467]
We give the design of the classifiers, which collects the features produced between the network sets.
We use the L2 normalization method to obtain the classification score instead of the Softmax Dense.
As a result, the proposed classifiers are able to improve the accuracy in the experimental cases.
arXiv Detail & Related papers (2021-01-14T04:32:40Z) - Interpretable Sequence Classification via Discrete Optimization [26.899228003677138]
In many applications such as healthcare monitoring or intrusion detection, early classification is crucial to prompt intervention.
In this work, we learn sequence classifiers that favour early classification from an evolving observation trace.
Our classifiers are interpretable---supporting explanation, counterfactual reasoning, and human-in-the-loop modification.
arXiv Detail & Related papers (2020-10-06T15:31:07Z) - Certified Robustness to Label-Flipping Attacks via Randomized Smoothing [105.91827623768724]
Machine learning algorithms are susceptible to data poisoning attacks.
We present a unifying view of randomized smoothing over arbitrary functions.
We propose a new strategy for building classifiers that are pointwise-certifiably robust to general data poisoning attacks.
arXiv Detail & Related papers (2020-02-07T21:28:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.