The Evolution of RWKV: Advancements in Efficient Language Modeling
- URL: http://arxiv.org/abs/2411.02795v1
- Date: Tue, 05 Nov 2024 04:10:05 GMT
- Title: The Evolution of RWKV: Advancements in Efficient Language Modeling
- Authors: Akul Datta,
- Abstract summary: The paper reviews the development of the Receptance Weighted Key Value architecture, emphasizing its advancements in efficient language modeling.
We examine its core innovations, adaptations across various domains, and performance advantages over traditional models.
The paper also discusses challenges and future directions for RWKV as a versatile architecture in deep learning.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper reviews the development of the Receptance Weighted Key Value (RWKV) architecture, emphasizing its advancements in efficient language modeling. RWKV combines the training efficiency of Transformers with the inference efficiency of RNNs through a novel linear attention mechanism. We examine its core innovations, adaptations across various domains, and performance advantages over traditional models. The paper also discusses challenges and future directions for RWKV as a versatile architecture in deep learning.
Related papers
- Learning Transformer-based World Models with Contrastive Predictive Coding [58.0159270859475]
We show that the next state prediction objective is insufficient to fully exploit the representation capabilities of Transformers.
We propose to extend world model predictions to longer time horizons by introducing TWISTER, a world model using action-conditioned Contrastive Predictive Coding.
TWISTER achieves a human-normalized mean score of 162% on the Atari 100k benchmark, setting a new record among state-of-the-art methods that do not employ look-ahead search.
arXiv Detail & Related papers (2025-03-06T13:18:37Z) - Enhancing RWKV-based Language Models for Long-Sequence Text Generation [0.0]
This paper introduces an enhanced RWKV architecture with adaptive temporal gating mechanisms for improved long-context language modeling.
We propose two principal innovations: (1) a position-aware convolutional shift operator that captures local syntactic patterns while preserving global coherence, and (2) a neurally-gated information routing mechanism that dynamically regulates inter-token information flow.
arXiv Detail & Related papers (2025-02-21T14:18:18Z) - A Survey of Model Architectures in Information Retrieval [64.75808744228067]
We focus on two key aspects: backbone models for feature extraction and end-to-end system architectures for relevance estimation.
We trace the development from traditional term-based methods to modern neural approaches, particularly highlighting the impact of transformer-based models and subsequent large language models (LLMs)
We conclude by discussing emerging challenges and future directions, including architectural optimizations for performance and scalability, handling of multimodal, multilingual data, and adaptation to novel application domains beyond traditional search paradigms.
arXiv Detail & Related papers (2025-02-20T18:42:58Z) - A Survey of RWKV [16.618320854505786]
Receptance Weighted Key Value (RWKV) model offers a novel alternative to the Transformer architecture.
Unlike conventional Transformers, which depend heavily on self-attention, RWKV adeptly captures long-range dependencies with minimal computational demands.
This paper seeks to fill this gap as the first comprehensive review of the RWKV architecture, its core principles, and its varied applications.
arXiv Detail & Related papers (2024-12-19T13:39:24Z) - Machine Learning Innovations in CPR: A Comprehensive Survey on Enhanced Resuscitation Techniques [52.71395121577439]
This survey paper explores the transformative role of Machine Learning (ML) and Artificial Intelligence (AI) in Cardiopulmonary Resuscitation (CPR)
It highlights the impact of predictive modeling, AI-enhanced devices, and real-time data analysis in improving resuscitation outcomes.
The paper provides a comprehensive overview, classification, and critical analysis of current applications, challenges, and future directions in this emerging field.
arXiv Detail & Related papers (2024-11-03T18:01:50Z) - FASTopic: Pretrained Transformer is a Fast, Adaptive, Stable, and Transferable Topic Model [76.509837704596]
We propose FASTopic, a fast, adaptive, stable, and transferable topic model.
We use Dual Semantic-relation Reconstruction (DSR) to model latent topics.
We also propose Embedding Transport Plan (ETP) to regularize semantic relations as optimal transport plans.
arXiv Detail & Related papers (2024-05-28T09:06:38Z) - Does Transformer Interpretability Transfer to RNNs? [0.6437284704257459]
Recent advances in recurrent neural network architectures have enabled RNNs to match or exceed the performance of equal-size transformers.
We show that it is possible to improve some of these techniques by taking advantage of RNNs' compressed state.
arXiv Detail & Related papers (2024-04-09T02:59:17Z) - Cross-Architecture Transfer Learning for Linear-Cost Inference Transformers [1.1499643186017316]
We propose Cross-Architecture Transfer Learning (XATL) to improve efficiency of Transformer Language Models.
Methodabbr significantly reduces the training time up to 2.5x times and converges to a better minimum with up to 2.6% stronger model on the LM benchmarks within the same compute budget.
arXiv Detail & Related papers (2024-04-03T12:27:36Z) - Vision-RWKV: Efficient and Scalable Visual Perception with RWKV-Like
Architectures [99.20299078655376]
This paper introduces Vision-RWKV, a model adapted from the RWKV model used in the NLP field.
Our model is designed to efficiently handle sparse inputs and demonstrate robust global processing capabilities.
Our evaluations demonstrate that VRWKV surpasses ViT's performance in image classification and has significantly faster speeds and lower memory usage.
arXiv Detail & Related papers (2024-03-04T18:46:20Z) - Graph-enhanced Optimizers for Structure-aware Recommendation Embedding Evolution [14.012470465446475]
We propose a novel embedding update mechanism, Structure-aware Embedding Evolution (SEvo)
Unlike GNN that typically serves as an intermediate module, SEvo is able to directly inject graph structural information into embedding.
SEvo can be seamlessly integrated into existing recommender systems for state-of-the-art performance.
arXiv Detail & Related papers (2023-09-24T04:09:16Z) - RRWKV: Capturing Long-range Dependencies in RWKV [0.0]
The paper devises the Retrospected Receptance Weighted Key Value architecture via incorporating the retrospecting ability into the RWKV to effectively absorb information.
RWKV has exploited a linearly tensor-product attention mechanism and achieved parallelized computations by deploying the time-sequential mode.
arXiv Detail & Related papers (2023-06-08T13:17:06Z) - RWKV: Reinventing RNNs for the Transformer Era [54.716108899349614]
We propose a novel model architecture that combines the efficient parallelizable training of transformers with the efficient inference of RNNs.
We scale our models as large as 14 billion parameters, by far the largest dense RNN ever trained, and find RWKV performs on par with similarly sized Transformers.
arXiv Detail & Related papers (2023-05-22T13:57:41Z) - Factorized Neural Transducer for Efficient Language Model Adaptation [51.81097243306204]
We propose a novel model, factorized neural Transducer, by factorizing the blank and vocabulary prediction.
It is expected that this factorization can transfer the improvement of the standalone language model to the Transducer for speech recognition.
We demonstrate that the proposed factorized neural Transducer yields 15% to 20% WER improvements when out-of-domain text data is used for language model adaptation.
arXiv Detail & Related papers (2021-09-27T15:04:00Z) - Non-autoregressive Transformer-based End-to-end ASR using BERT [13.07939371864781]
This paper presents a transformer-based end-to-end automatic speech recognition (ASR) model based on BERT.
A series of experiments conducted on the AISHELL-1 dataset demonstrates competitive or superior results.
arXiv Detail & Related papers (2021-04-10T16:22:17Z) - Towards Practical Lipreading with Distilled and Efficient Models [57.41253104365274]
Lipreading has witnessed a lot of progress due to the resurgence of neural networks.
Recent works have placed emphasis on aspects such as improving performance by finding the optimal architecture or improving generalization.
There is still a significant gap between the current methodologies and the requirements for an effective deployment of lipreading in practical scenarios.
We propose a series of innovations that significantly bridge that gap: first, we raise the state-of-the-art performance by a wide margin on LRW and LRW-1000 to 88.5% and 46.6%, respectively using self-distillation.
arXiv Detail & Related papers (2020-07-13T16:56:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.