Learning to Unify Audio, Visual and Text for Audio-Enhanced Multilingual Visual Answer Localization
- URL: http://arxiv.org/abs/2411.02851v1
- Date: Tue, 05 Nov 2024 06:49:14 GMT
- Title: Learning to Unify Audio, Visual and Text for Audio-Enhanced Multilingual Visual Answer Localization
- Authors: Zhibin Wen, Bin Li,
- Abstract summary: The goal of Multilingual Visual Answer localization (MVAL) is to locate a video segment that answers a given multilingual question.
Existing methods either focus solely on visual modality or integrate visual and subtitle modalities.
We propose a unified Audio-Visual-Textual Span localization (AVTSL) method that incorporates audio modality to augment both visual and textual representations.
- Score: 4.062872727927056
- License:
- Abstract: The goal of Multilingual Visual Answer Localization (MVAL) is to locate a video segment that answers a given multilingual question. Existing methods either focus solely on visual modality or integrate visual and subtitle modalities. However, these methods neglect the audio modality in videos, consequently leading to incomplete input information and poor performance in the MVAL task. In this paper, we propose a unified Audio-Visual-Textual Span Localization (AVTSL) method that incorporates audio modality to augment both visual and textual representations for the MVAL task. Specifically, we integrate features from three modalities and develop three predictors, each tailored to the unique contributions of the fused modalities: an audio-visual predictor, a visual predictor, and a textual predictor. Each predictor generates predictions based on its respective modality. To maintain consistency across the predicted results, we introduce an Audio-Visual-Textual Consistency module. This module utilizes a Dynamic Triangular Loss (DTL) function, allowing each modality's predictor to dynamically learn from the others. This collaborative learning ensures that the model generates consistent and comprehensive answers. Extensive experiments show that our proposed method outperforms several state-of-the-art (SOTA) methods, which demonstrates the effectiveness of the audio modality.
Related papers
- CLIP-VAD: Exploiting Vision-Language Models for Voice Activity Detection [2.110168344647122]
Voice Activity Detection (VAD) is the process of automatically determining whether a person is speaking and identifying the timing of their speech.
We introduce a novel approach leveraging Contrastive Language-Image Pretraining (CLIP) models.
Our approach outperforms several audio-visual methods despite its simplicity, and without requiring pre-training on extensive audio-visual datasets.
arXiv Detail & Related papers (2024-10-18T14:43:34Z) - Efficient Training for Multilingual Visual Speech Recognition: Pre-training with Discretized Visual Speech Representation [55.15299351110525]
This paper explores sentence-level multilingual Visual Speech Recognition (VSR) that can recognize different languages with a single trained model.
We propose a novel training strategy, processing with visual speech units.
We set new state-of-the-art multilingual VSR performances by achieving comparable performances to the previous language-specific VSR models.
arXiv Detail & Related papers (2024-01-18T08:46:02Z) - VALOR: Vision-Audio-Language Omni-Perception Pretraining Model and
Dataset [53.46019570679092]
We propose a Vision-Audio-Language Omni-peRception pretraining model (VALOR) for multi-modal understanding and generation.
VALOR jointly models relationships of vision, audio and language in an end-to-end manner.
It achieves new state-of-the-art performances on series of public cross-modality benchmarks.
arXiv Detail & Related papers (2023-04-17T15:08:15Z) - Language-Guided Audio-Visual Source Separation via Trimodal Consistency [64.0580750128049]
A key challenge in this task is learning to associate the linguistic description of a sound-emitting object to its visual features and the corresponding components of the audio waveform.
We adapt off-the-shelf vision-language foundation models to provide pseudo-target supervision via two novel loss functions.
We demonstrate the effectiveness of our self-supervised approach on three audio-visual separation datasets.
arXiv Detail & Related papers (2023-03-28T22:45:40Z) - VATLM: Visual-Audio-Text Pre-Training with Unified Masked Prediction for
Speech Representation Learning [119.49605266839053]
We propose a unified cross-modal representation learning framework VATLM (Visual-Audio-Text Language Model)
The proposed VATLM employs a unified backbone network to model the modality-independent information.
In order to integrate these three modalities into one shared semantic space, VATLM is optimized with a masked prediction task of unified tokens.
arXiv Detail & Related papers (2022-11-21T09:10:10Z) - Joint Learning of Visual-Audio Saliency Prediction and Sound Source
Localization on Multi-face Videos [101.83513408195692]
We propose a multitask learning method for visual-audio saliency prediction and sound source localization on multi-face video.
The proposed method outperforms 12 state-of-the-art saliency prediction methods, and achieves competitive results in sound source localization.
arXiv Detail & Related papers (2021-11-05T14:35:08Z) - TriBERT: Full-body Human-centric Audio-visual Representation Learning
for Visual Sound Separation [35.93516937521393]
We introduce TriBERT -- a transformer-based architecture inspired by ViLBERT.
TriBERT enables contextual feature learning across three modalities: vision, pose, and audio.
We show that the learned TriBERT representations are generic and significantly improve performance on other audio-visual tasks.
arXiv Detail & Related papers (2021-10-26T04:50:42Z) - SPLAT: Speech-Language Joint Pre-Training for Spoken Language
Understanding [61.02342238771685]
Spoken language understanding requires a model to analyze input acoustic signal to understand its linguistic content and make predictions.
Various pre-training methods have been proposed to learn rich representations from large-scale unannotated speech and text.
We propose a novel semi-supervised learning framework, SPLAT, to jointly pre-train the speech and language modules.
arXiv Detail & Related papers (2020-10-05T19:29:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.