TokenSelect: Efficient Long-Context Inference and Length Extrapolation for LLMs via Dynamic Token-Level KV Cache Selection
- URL: http://arxiv.org/abs/2411.02886v1
- Date: Tue, 05 Nov 2024 07:56:24 GMT
- Title: TokenSelect: Efficient Long-Context Inference and Length Extrapolation for LLMs via Dynamic Token-Level KV Cache Selection
- Authors: Wei Wu, Zhuoshi Pan, Chao Wang, Liyi Chen, Yunchu Bai, Kun Fu, Zheng Wang, Hui Xiong,
- Abstract summary: TokenSelect is a model-agnostic, training-free method for efficient and accurate long-context inference.
A comprehensive evaluation of TokenSelect demonstrates up to 23.84x speedup in attention and up to 2.28x acceleration in end-to-end latency.
- Score: 23.20856449846164
- License:
- Abstract: With the development of large language models (LLMs), the ability to handle longer contexts has become a key capability for Web applications such as cross-document understanding and LLM-powered search systems. However, this progress faces two major challenges: performance degradation due to sequence lengths out-of-distribution, and excessively long inference times caused by the quadratic computational complexity of attention. These issues hinder the application of LLMs in long-context scenarios. In this paper, we propose Dynamic Token-Level KV Cache Selection (TokenSelect), a model-agnostic, training-free method for efficient and accurate long-context inference. TokenSelect builds upon the observation of non-contiguous attention sparsity, using Query-Key dot products to measure per-head KV Cache criticality at token-level. By per-head soft voting mechanism, TokenSelect selectively involves a small number of critical KV cache tokens in the attention calculation without sacrificing accuracy. To further accelerate TokenSelect, we designed the Selection Cache based on observations of consecutive Query similarity and implemented efficient dot product kernel, significantly reducing the overhead of token selection. A comprehensive evaluation of TokenSelect demonstrates up to 23.84x speedup in attention computation and up to 2.28x acceleration in end-to-end latency, while providing superior performance compared to state-of-the-art long-context inference methods.
Related papers
- Unshackling Context Length: An Efficient Selective Attention Approach through Query-Key Compression [40.37188244460367]
Efficient Selective Attention (ESA) is a novel approach that extends context length by efficiently selecting the most critical tokens at the token level to compute attention.
We evaluate ESA on long sequence benchmarks with maximum lengths up to 256k using open-source LLMs with context lengths of 8k and 32k.
arXiv Detail & Related papers (2025-02-20T11:52:36Z) - Activation-aware Probe-Query: Effective Key-Value Retrieval for Long-Context LLMs Inference [56.71209737306054]
We propose textbfActQKV, a training-free, textbfActivation-aware approach that dynamically determines probe-textbfQuery and leverages it to retrieve the relevant textbfKV pairs for inference.
Experiments on the Long-Bench and $infty$ Benchmarks demonstrate its state-of-the-art performance with competitive inference quality and resource efficiency.
arXiv Detail & Related papers (2025-02-19T08:50:44Z) - Tactic: Adaptive Sparse Attention with Clustering and Distribution Fitting for Long-Context LLMs [10.52833484759311]
We propose Tactic, a sparsity-adaptive and calibration-free sparse attention mechanism.
It dynamically selects tokens based on their cumulative attention scores rather than a fixed token budget.
We show that Tactic outperforms existing sparse attention algorithms, achieving superior accuracy and up to 7.29x decode attention speedup.
arXiv Detail & Related papers (2025-02-17T08:39:43Z) - AttentionPredictor: Temporal Pattern Matters for Efficient LLM Inference [51.1972443343829]
We propose AttentionPredictor, which is the first learning-based critical token identification approach.
AttentionPredictor accurately predicts the attention score while consuming negligible memory.
We also propose a cross-token critical cache prefetching framework that hides the token time overhead to accelerate the decoding stage.
arXiv Detail & Related papers (2025-02-06T13:41:46Z) - Squeezed Attention: Accelerating Long Context Length LLM Inference [64.11145320159126]
We propose Squeezed Attention as a mechanism to accelerate LLM applications where a large portion of the input prompt is fixed.
We use K-means clustering offline to group the keys for the fixed context based on semantic similarity and represent each cluster with a single centroid value.
We then compute exact attention using only these important keys from the fixed context, thereby reducing bandwidth and computational costs.
arXiv Detail & Related papers (2024-11-14T18:54:19Z) - Recycled Attention: Efficient inference for long-context language models [54.00118604124301]
We propose Recycled Attention, an inference-time method which alternates between full context attention and attention over a subset of input tokens.
When performing partial attention, we recycle the attention pattern of a previous token that has performed full attention and attend only to the top K most attended tokens.
Compared to previously proposed inference-time acceleration method which attends only to local context or tokens with high accumulative attention scores, our approach flexibly chooses tokens that are relevant to the current decoding step.
arXiv Detail & Related papers (2024-11-08T18:57:07Z) - TidalDecode: Fast and Accurate LLM Decoding with Position Persistent Sparse Attention [7.4088392854630625]
Large language models (LLMs) have driven significant advancements across diverse NLP tasks.
This paper introduces TidalDecode, a system for fast and accurate LLM decoding through position persistent sparse attention.
arXiv Detail & Related papers (2024-10-07T14:30:27Z) - CritiPrefill: A Segment-wise Criticality-based Approach for Prefilling Acceleration in LLMs [8.649971923487835]
We propose CritiPrefill, a criticality-based segment-wise prefilling method for long-context processing.
CritiPrefill partitions the input sequence's queries and KV cache into segments and blocks, utilizing a segment-wise algorithm to estimate the query criticality.
Extensive evaluations on multiple long-context datasets show up to 2.7x speedup on Llama3-8B and 3.0x speedup on Yi-9B for 128K context length on a single A100 GPU.
arXiv Detail & Related papers (2024-09-19T06:09:56Z) - Training-Free Exponential Context Extension via Cascading KV Cache [49.608367376911694]
We introduce a novel mechanism that leverages cascading sub-cache buffers to selectively retain the most relevant tokens.
Our method reduces prefill stage latency by a factor of 6.8 when compared to flash attention on 1M tokens.
arXiv Detail & Related papers (2024-06-24T03:59:17Z) - SubGen: Token Generation in Sublinear Time and Memory [48.35076900702408]
Large language models (LLMs) have extensive memory requirements for token generation.
In this work, we focus on developing an efficient compression technique for the KV cache.
We have devised a novel caching method with sublinear complexity, employing online clustering on key tokens and online $ell$ sampling on values.
Not only does this algorithm ensure a sublinear memory footprint and sublinear time complexity, but we also establish a tight error bound for our approach.
arXiv Detail & Related papers (2024-02-08T22:17:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.