TDDBench: A Benchmark for Training data detection
- URL: http://arxiv.org/abs/2411.03363v1
- Date: Tue, 05 Nov 2024 05:48:48 GMT
- Title: TDDBench: A Benchmark for Training data detection
- Authors: Zhihao Zhu, Yi Yang, Defu Lian,
- Abstract summary: Training Data Detection (TDD) is a task aimed at determining whether a specific data instance is used to train a machine learning model.
There is no comprehensive benchmark to thoroughly evaluate the effectiveness of TDD methods.
We benchmark 21 different TDD methods across four detection paradigms and evaluate their performance from five perspectives.
- Score: 42.49625153675721
- License:
- Abstract: Training Data Detection (TDD) is a task aimed at determining whether a specific data instance is used to train a machine learning model. In the computer security literature, TDD is also referred to as Membership Inference Attack (MIA). Given its potential to assess the risks of training data breaches, ensure copyright authentication, and verify model unlearning, TDD has garnered significant attention in recent years, leading to the development of numerous methods. Despite these advancements, there is no comprehensive benchmark to thoroughly evaluate the effectiveness of TDD methods. In this work, we introduce TDDBench, which consists of 13 datasets spanning three data modalities: image, tabular, and text. We benchmark 21 different TDD methods across four detection paradigms and evaluate their performance from five perspectives: average detection performance, best detection performance, memory consumption, and computational efficiency in both time and memory. With TDDBench, researchers can identify bottlenecks and areas for improvement in TDD algorithms, while practitioners can make informed trade-offs between effectiveness and efficiency when selecting TDD algorithms for specific use cases. Our large-scale benchmarking also reveals the generally unsatisfactory performance of TDD algorithms across different datasets. To enhance accessibility and reproducibility, we open-source TDDBench for the research community.
Related papers
- The Surprising Effectiveness of Test-Time Training for Abstract Reasoning [64.36534512742736]
We investigate the effectiveness of test-time training (TTT) as a mechanism for improving models' reasoning capabilities.
TTT significantly improves performance on ARC tasks, achieving up to 6x improvement in accuracy compared to base fine-tuned models.
Our findings suggest that explicit symbolic search is not the only path to improved abstract reasoning in neural language models.
arXiv Detail & Related papers (2024-11-11T18:59:45Z) - BoostAdapter: Improving Vision-Language Test-Time Adaptation via Regional Bootstrapping [64.8477128397529]
We propose a training-required and training-free test-time adaptation framework.
We maintain a light-weight key-value memory for feature retrieval from instance-agnostic historical samples and instance-aware boosting samples.
We theoretically justify the rationality behind our method and empirically verify its effectiveness on both the out-of-distribution and the cross-domain datasets.
arXiv Detail & Related papers (2024-10-20T15:58:43Z) - Dataset Distillation from First Principles: Integrating Core Information Extraction and Purposeful Learning [10.116674195405126]
We argue that a precise characterization of the underlying optimization problem must specify the inference task associated with the application of interest.
Our formalization reveals novel applications of DD across different modeling environments.
We present numerical results for two case studies important in contemporary settings.
arXiv Detail & Related papers (2024-09-02T18:11:15Z) - Advancing 3D Point Cloud Understanding through Deep Transfer Learning: A Comprehensive Survey [3.929140365559557]
This paper provides a comprehensive overview of the latest techniques for understanding 3DPC using deep transfer learning (DTL) and domain adaptation (DA)
The paper covers various applications, such as 3DPC object detection, semantic labeling, segmentation, classification, registration, downsampling/upsampling, and denoising.
arXiv Detail & Related papers (2024-07-25T08:47:27Z) - Relative Difficulty Distillation for Semantic Segmentation [54.76143187709987]
We propose a pixel-level KD paradigm for semantic segmentation named Relative Difficulty Distillation (RDD)
RDD allows the teacher network to provide effective guidance on learning focus without additional optimization goals.
Our research showcases that RDD can integrate with existing KD methods to improve their upper performance bound.
arXiv Detail & Related papers (2024-07-04T08:08:25Z) - Can pre-trained models assist in dataset distillation? [21.613468512330442]
Pre-trained Models (PTMs) function as knowledge repositories, containing extensive information from the original dataset.
This naturally raises a question: Can PTMs effectively transfer knowledge to synthetic datasets, guiding DD accurately?
We systematically study different options in PTMs, including initialization parameters, model architecture, training epoch and domain knowledge.
arXiv Detail & Related papers (2023-10-05T03:51:21Z) - Efficient Deep Reinforcement Learning Requires Regulating Overfitting [91.88004732618381]
We show that high temporal-difference (TD) error on the validation set of transitions is the main culprit that severely affects the performance of deep RL algorithms.
We show that a simple online model selection method that targets the validation TD error is effective across state-based DMC and Gym tasks.
arXiv Detail & Related papers (2023-04-20T17:11:05Z) - Stance Detection Benchmark: How Robust Is Your Stance Detection? [65.91772010586605]
Stance Detection (StD) aims to detect an author's stance towards a certain topic or claim.
We introduce a StD benchmark that learns from ten StD datasets of various domains in a multi-dataset learning setting.
Within this benchmark setup, we are able to present new state-of-the-art results on five of the datasets.
arXiv Detail & Related papers (2020-01-06T13:37:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.