STEER: Flexible Robotic Manipulation via Dense Language Grounding
- URL: http://arxiv.org/abs/2411.03409v1
- Date: Tue, 05 Nov 2024 18:48:12 GMT
- Title: STEER: Flexible Robotic Manipulation via Dense Language Grounding
- Authors: Laura Smith, Alex Irpan, Montserrat Gonzalez Arenas, Sean Kirmani, Dmitry Kalashnikov, Dhruv Shah, Ted Xiao,
- Abstract summary: STEER is a robot learning framework that bridges high-level, commonsense reasoning with precise, flexible low-level control.
Our approach translates complex situational awareness into actionable low-level behavior through training language-grounded policies with dense annotation.
- Score: 16.97343810491996
- License:
- Abstract: The complexity of the real world demands robotic systems that can intelligently adapt to unseen situations. We present STEER, a robot learning framework that bridges high-level, commonsense reasoning with precise, flexible low-level control. Our approach translates complex situational awareness into actionable low-level behavior through training language-grounded policies with dense annotation. By structuring policy training around fundamental, modular manipulation skills expressed in natural language, STEER exposes an expressive interface for humans or Vision-Language Models (VLMs) to intelligently orchestrate the robot's behavior by reasoning about the task and context. Our experiments demonstrate the skills learned via STEER can be combined to synthesize novel behaviors to adapt to new situations or perform completely new tasks without additional data collection or training.
Related papers
- $π_0$: A Vision-Language-Action Flow Model for General Robot Control [77.32743739202543]
We propose a novel flow matching architecture built on top of a pre-trained vision-language model (VLM) to inherit Internet-scale semantic knowledge.
We evaluate our model in terms of its ability to perform tasks in zero shot after pre-training, follow language instructions from people, and its ability to acquire new skills via fine-tuning.
arXiv Detail & Related papers (2024-10-31T17:22:30Z) - Towards Natural Language-Driven Assembly Using Foundation Models [11.710022685486914]
Large Language Models (LLMs) and strong vision models have enabled rapid research and development in the field of Vision-Language-Action models.
We present a global control policy based on LLMs that can transfer the control policy to a finite set of skills that are specifically trained to perform high-precision tasks.
The integration of LLMs into this framework underscores their significance in not only interpreting and processing language inputs but also in enriching the control mechanisms for diverse and intricate robotic operations.
arXiv Detail & Related papers (2024-06-23T12:14:37Z) - Interpretable Robotic Manipulation from Language [11.207620790833271]
We introduce an explainable behavior cloning agent, named Ex-PERACT, specifically designed for manipulation tasks.
At the top level, the model is tasked with learning a discrete skill code, while at the bottom level, the policy network translates the problem into a voxelized grid and maps the discretized actions to voxel grids.
We evaluate our method across eight challenging manipulation tasks utilizing the RLBench benchmark, demonstrating that Ex-PERACT not only achieves competitive policy performance but also effectively bridges the gap between human instructions and machine execution in complex environments.
arXiv Detail & Related papers (2024-05-27T11:02:21Z) - AnySkill: Learning Open-Vocabulary Physical Skill for Interactive Agents [58.807802111818994]
We propose AnySkill, a novel hierarchical method that learns physically plausible interactions following open-vocabulary instructions.
Our approach begins by developing a set of atomic actions via a low-level controller trained via imitation learning.
An important feature of our method is the use of image-based rewards for the high-level policy, which allows the agent to learn interactions with objects without manual reward engineering.
arXiv Detail & Related papers (2024-03-19T15:41:39Z) - PADL: Language-Directed Physics-Based Character Control [66.517142635815]
We present PADL, which allows users to issue natural language commands for specifying high-level tasks and low-level skills that a character should perform.
We show that our framework can be applied to effectively direct a simulated humanoid character to perform a diverse array of complex motor skills.
arXiv Detail & Related papers (2023-01-31T18:59:22Z) - "No, to the Right" -- Online Language Corrections for Robotic
Manipulation via Shared Autonomy [70.45420918526926]
We present LILAC, a framework for incorporating and adapting to natural language corrections online during execution.
Instead of discrete turn-taking between a human and robot, LILAC splits agency between the human and robot.
We show that our corrections-aware approach obtains higher task completion rates, and is subjectively preferred by users.
arXiv Detail & Related papers (2023-01-06T15:03:27Z) - Dexterous Manipulation from Images: Autonomous Real-World RL via Substep
Guidance [71.36749876465618]
We describe a system for vision-based dexterous manipulation that provides a "programming-free" approach for users to define new tasks.
Our system includes a framework for users to define a final task and intermediate sub-tasks with image examples.
experimental results with a four-finger robotic hand learning multi-stage object manipulation tasks directly in the real world.
arXiv Detail & Related papers (2022-12-19T22:50:40Z) - LaTTe: Language Trajectory TransformEr [33.7939079214046]
This work proposes a flexible language-based framework to modify generic 3D robotic trajectories.
We employ an auto-regressive transformer to map natural language inputs and contextual images into changes in 3D trajectories.
We show through simulations and real-life experiments that the model can successfully follow human intent.
arXiv Detail & Related papers (2022-08-04T22:43:21Z) - Learning Flexible Translation between Robot Actions and Language
Descriptions [16.538887534958555]
We propose a paired gated autoencoders (PGAE) for flexible translation between robot actions and language descriptions.
We train our model in an end-to-end fashion by pairing each action with appropriate descriptions that contain a signal informing about the translation direction.
With the option to use a pretrained language model as the language encoder, our model has the potential to recognise unseen natural language input.
arXiv Detail & Related papers (2022-07-15T12:37:05Z) - What Matters in Language Conditioned Robotic Imitation Learning [26.92329260907805]
We study the most critical challenges in learning language conditioned policies from offline free-form imitation datasets.
We present a novel approach that significantly outperforms the state of the art on the challenging language conditioned long-horizon robot manipulation CALVIN benchmark.
arXiv Detail & Related papers (2022-04-13T08:45:32Z) - Learning Adaptive Language Interfaces through Decomposition [89.21937539950966]
We introduce a neural semantic parsing system that learns new high-level abstractions through decomposition.
Users interactively teach the system by breaking down high-level utterances describing novel behavior into low-level steps.
arXiv Detail & Related papers (2020-10-11T08:27:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.