Large Language Models Orchestrating Structured Reasoning Achieve Kaggle Grandmaster Level
- URL: http://arxiv.org/abs/2411.03562v1
- Date: Tue, 05 Nov 2024 23:55:23 GMT
- Title: Large Language Models Orchestrating Structured Reasoning Achieve Kaggle Grandmaster Level
- Authors: Antoine Grosnit, Alexandre Maraval, James Doran, Giuseppe Paolo, Albert Thomas, Refinath Shahul Hameed Nabeezath Beevi, Jonas Gonzalez, Khyati Khandelwal, Ignacio Iacobacci, Abdelhakim Benechehab, Hamza Cherkaoui, Youssef Attia El-Hili, Kun Shao, Jianye Hao, Jun Yao, Balazs Kegl, Haitham Bou-Ammar, Jun Wang,
- Abstract summary: We introduce Agent K v1.0, an end-to-end autonomous data science agent.
It manages the entire data science life cycle by learning from experience.
It optimises long- and short-term memory by selectively storing and retrieving key information.
- Score: 73.14232472724758
- License:
- Abstract: We introduce Agent K v1.0, an end-to-end autonomous data science agent designed to automate, optimise, and generalise across diverse data science tasks. Fully automated, Agent K v1.0 manages the entire data science life cycle by learning from experience. It leverages a highly flexible structured reasoning framework to enable it to dynamically process memory in a nested structure, effectively learning from accumulated experience stored to handle complex reasoning tasks. It optimises long- and short-term memory by selectively storing and retrieving key information, guiding future decisions based on environmental rewards. This iterative approach allows it to refine decisions without fine-tuning or backpropagation, achieving continuous improvement through experiential learning. We evaluate our agent's apabilities using Kaggle competitions as a case study. Following a fully automated protocol, Agent K v1.0 systematically addresses complex and multimodal data science tasks, employing Bayesian optimisation for hyperparameter tuning and feature engineering. Our new evaluation framework rigorously assesses Agent K v1.0's end-to-end capabilities to generate and send submissions starting from a Kaggle competition URL. Results demonstrate that Agent K v1.0 achieves a 92.5\% success rate across tasks, spanning tabular, computer vision, NLP, and multimodal domains. When benchmarking against 5,856 human Kaggle competitors by calculating Elo-MMR scores for each, Agent K v1.0 ranks in the top 38\%, demonstrating an overall skill level comparable to Expert-level users. Notably, its Elo-MMR score falls between the first and third quartiles of scores achieved by human Grandmasters. Furthermore, our results indicate that Agent K v1.0 has reached a performance level equivalent to Kaggle Grandmaster, with a record of 6 gold, 3 silver, and 7 bronze medals, as defined by Kaggle's progression system.
Related papers
- AutoKaggle: A Multi-Agent Framework for Autonomous Data Science Competitions [45.0447118979891]
AutoKaggle implements an iterative development process that combines code execution and unit testing to ensure code correctness and logic consistency.
Our universal data science toolkit, comprising validated functions for data cleaning, feature engineering, and modeling, forms the foundation of this solution.
AutoKaggle achieves a validation rate of 0.85 and a comprehensive score of 0.82 in typical data science pipelines.
arXiv Detail & Related papers (2024-10-27T12:44:25Z) - MLE-bench: Evaluating Machine Learning Agents on Machine Learning Engineering [35.237253622981264]
MLE-bench is a benchmark for measuring how well AI agents perform at machine learning engineering.
We curate 75 ML engineering-related competitions from Kaggle.
We establish human baselines for each competition using Kaggle's publicly available leaderboards.
arXiv Detail & Related papers (2024-10-09T17:34:27Z) - Monte Carlo Tree Search Boosts Reasoning via Iterative Preference Learning [55.96599486604344]
We introduce an approach aimed at enhancing the reasoning capabilities of Large Language Models (LLMs) through an iterative preference learning process.
We use Monte Carlo Tree Search (MCTS) to iteratively collect preference data, utilizing its look-ahead ability to break down instance-level rewards into more granular step-level signals.
The proposed algorithm employs Direct Preference Optimization (DPO) to update the LLM policy using this newly generated step-level preference data.
arXiv Detail & Related papers (2024-05-01T11:10:24Z) - Tool-Augmented Reward Modeling [58.381678612409]
We propose a tool-augmented preference modeling approach, named Themis, to address limitations by empowering RMs with access to external environments.
Our study delves into the integration of external tools into RMs, enabling them to interact with diverse external sources.
In human evaluations, RLHF trained with Themis attains an average win rate of 32% when compared to baselines.
arXiv Detail & Related papers (2023-10-02T09:47:40Z) - Self-Supervised Representation Learning from Temporal Ordering of
Automated Driving Sequences [49.91741677556553]
We propose TempO, a temporal ordering pretext task for pre-training region-level feature representations for perception tasks.
We embed each frame by an unordered set of proposal feature vectors, a representation that is natural for object detection or tracking systems.
Extensive evaluations on the BDD100K, nuImages, and MOT17 datasets show that our TempO pre-training approach outperforms single-frame self-supervised learning methods.
arXiv Detail & Related papers (2023-02-17T18:18:27Z) - DAAS: Differentiable Architecture and Augmentation Policy Search [107.53318939844422]
This work considers the possible coupling between neural architectures and data augmentation and proposes an effective algorithm jointly searching for them.
Our approach achieves 97.91% accuracy on CIFAR-10 and 76.6% Top-1 accuracy on ImageNet dataset, showing the outstanding performance of our search algorithm.
arXiv Detail & Related papers (2021-09-30T17:15:17Z) - COM2SENSE: A Commonsense Reasoning Benchmark with Complementary
Sentences [21.11065466376105]
Commonsense reasoning is intuitive for humans but has been a long-term challenge for artificial intelligence (AI)
Recent advancements in pretrained language models have shown promising results on several commonsense benchmark datasets.
We introduce a new commonsense reasoning benchmark dataset comprising natural language true/false statements.
arXiv Detail & Related papers (2021-06-02T06:31:55Z) - How much progress have we made in neural network training? A New
Evaluation Protocol for Benchmarking Optimizers [86.36020260204302]
We propose a new benchmarking protocol to evaluate both end-to-end efficiency and data-addition training efficiency.
A human study is conducted to show that our evaluation protocol matches human tuning behavior better than the random search.
We then apply the proposed benchmarking framework to 7s and various tasks, including computer vision, natural language processing, reinforcement learning, and graph mining.
arXiv Detail & Related papers (2020-10-19T21:46:39Z) - AIBench Training: Balanced Industry-Standard AI Training Benchmarking [26.820244556465333]
Earlier-stage evaluations of a new AI architecture/system need affordable benchmarks.
We use real-world benchmarks to cover the factors space that impacts the learning dynamics.
We contribute by far the most comprehensive AI training benchmark suite.
arXiv Detail & Related papers (2020-04-30T11:08:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.