Variational Inference on the Boolean Hypercube with the Quantum Entropy
- URL: http://arxiv.org/abs/2411.03759v2
- Date: Fri, 14 Feb 2025 08:25:32 GMT
- Title: Variational Inference on the Boolean Hypercube with the Quantum Entropy
- Authors: Eliot Beyler, Francis Bach,
- Abstract summary: We derive variational inference upper-bounds on the log-partition function of pairwise Markov random fields on the Boolean hypercube.<n>We then propose an efficient algorithm to compute these bounds based on primal-dual optimization.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we derive variational inference upper-bounds on the log-partition function of pairwise Markov random fields on the Boolean hypercube, based on quantum relaxations of the Kullback-Leibler divergence. We then propose an efficient algorithm to compute these bounds based on primal-dual optimization. An improvement of these bounds through the use of ''hierarchies,'' similar to sum-of-squares (SoS) hierarchies is proposed, and we present a greedy algorithm to select among these relaxations. We carry extensive numerical experiments and compare with state-of-the-art methods for this inference problem.
Related papers
- Designing Algorithms for Entropic Optimal Transport from an Optimisation Perspective [12.343553053539976]
We develop a collection of novel methods for the entropic-regularised optimal transport problem.<n>We are inspired by existing mirror interpretations of the Sinkhorn problem.<n>The broader we develop based on over the joint distributions also finds an analogue in the Schr"odinger bridge problem.
arXiv Detail & Related papers (2025-07-16T13:56:11Z) - High order schemes for solving partial differential equations on a quantum computer [0.0]
We show that higher-order methods can reduce the number of qubits necessary for discretization, similar to the classical case.
This result has important consequences for the practical application of quantum algorithms based on Hamiltonian evolution.
arXiv Detail & Related papers (2024-12-26T14:21:59Z) - The role of gaps in digitized counterdiabatic QAOA for fully-connected spin models [0.0]
CD corrections to the quantum approximate optimization algorithm (QAOA) have been proposed, yielding faster convergence within the desired accuracy than standard QAOA.
We show that the performances of the algorithm are related to the spectral properties of the instances analyzed.
arXiv Detail & Related papers (2024-09-05T13:17:56Z) - Distributed Markov Chain Monte Carlo Sampling based on the Alternating
Direction Method of Multipliers [143.6249073384419]
In this paper, we propose a distributed sampling scheme based on the alternating direction method of multipliers.
We provide both theoretical guarantees of our algorithm's convergence and experimental evidence of its superiority to the state-of-the-art.
In simulation, we deploy our algorithm on linear and logistic regression tasks and illustrate its fast convergence compared to existing gradient-based methods.
arXiv Detail & Related papers (2024-01-29T02:08:40Z) - Connection between single-layer Quantum Approximate Optimization
Algorithm interferometry and thermal distributions sampling [0.0]
We extend the theoretical derivation of the amplitudes of the eigenstates, and the Boltzmann distributions generated by single-layer QAOA.
We also review the implications that this behavior has from both a practical and fundamental perspective.
arXiv Detail & Related papers (2023-10-13T15:06:58Z) - First Order Methods with Markovian Noise: from Acceleration to Variational Inequalities [91.46841922915418]
We present a unified approach for the theoretical analysis of first-order variation methods.
Our approach covers both non-linear gradient and strongly Monte Carlo problems.
We provide bounds that match the oracle strongly in the case of convex method optimization problems.
arXiv Detail & Related papers (2023-05-25T11:11:31Z) - Efficient Quantum Algorithms for Nonlinear Stochastic Dynamical Systems [2.707154152696381]
We propose efficient quantum algorithms for solving nonlinear differential equations (SDE) via the associated Fokker-Planck equation (FPE)
We discretize the FPE in space and time using two well-known numerical schemes, namely Chang-Cooper and implicit finite difference.
We then compute the solution of the resulting system of linear equations using the quantum linear systems.
arXiv Detail & Related papers (2023-03-04T17:40:23Z) - Fast Computation of Optimal Transport via Entropy-Regularized Extragradient Methods [75.34939761152587]
Efficient computation of the optimal transport distance between two distributions serves as an algorithm that empowers various applications.
This paper develops a scalable first-order optimization-based method that computes optimal transport to within $varepsilon$ additive accuracy.
arXiv Detail & Related papers (2023-01-30T15:46:39Z) - Adaptive Stochastic Optimisation of Nonconvex Composite Objectives [2.1700203922407493]
We propose and analyse a family of generalised composite mirror descent algorithms.
With adaptive step sizes, the proposed algorithms converge without requiring prior knowledge of the problem.
We exploit the low-dimensional structure of the decision sets for high-dimensional problems.
arXiv Detail & Related papers (2022-11-21T18:31:43Z) - First-Order Algorithms for Nonlinear Generalized Nash Equilibrium
Problems [88.58409977434269]
We consider the problem of computing an equilibrium in a class of nonlinear generalized Nash equilibrium problems (NGNEPs)
Our contribution is to provide two simple first-order algorithmic frameworks based on the quadratic penalty method and the augmented Lagrangian method.
We provide nonasymptotic theoretical guarantees for these algorithms.
arXiv Detail & Related papers (2022-04-07T00:11:05Z) - Amortized Implicit Differentiation for Stochastic Bilevel Optimization [53.12363770169761]
We study a class of algorithms for solving bilevel optimization problems in both deterministic and deterministic settings.
We exploit a warm-start strategy to amortize the estimation of the exact gradient.
By using this framework, our analysis shows these algorithms to match the computational complexity of methods that have access to an unbiased estimate of the gradient.
arXiv Detail & Related papers (2021-11-29T15:10:09Z) - The Last-Iterate Convergence Rate of Optimistic Mirror Descent in
Stochastic Variational Inequalities [29.0058976973771]
We show an intricate relation between the algorithm's rate of convergence and the local geometry induced by the method's underlying Bregman function.
We show that this exponent determines both the optimal step-size policy of the algorithm and the optimal rates attained.
arXiv Detail & Related papers (2021-07-05T09:54:47Z) - Optimal Randomized First-Order Methods for Least-Squares Problems [56.05635751529922]
This class of algorithms encompasses several randomized methods among the fastest solvers for least-squares problems.
We focus on two classical embeddings, namely, Gaussian projections and subsampled Hadamard transforms.
Our resulting algorithm yields the best complexity known for solving least-squares problems with no condition number dependence.
arXiv Detail & Related papers (2020-02-21T17:45:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.