What Really is Commonsense Knowledge?
- URL: http://arxiv.org/abs/2411.03964v1
- Date: Wed, 06 Nov 2024 14:54:19 GMT
- Title: What Really is Commonsense Knowledge?
- Authors: Quyet V. Do, Junze Li, Tung-Duong Vuong, Zhaowei Wang, Yangqiu Song, Xiaojuan Ma,
- Abstract summary: We survey existing definitions of commonsense knowledge, ground into the three frameworks for defining concepts, and consolidate them into a unified definition of commonsense knowledge.
We then use the consolidated definition for annotations and experiments on the CommonsenseQA and CommonsenseQA 2.0 datasets.
Our study shows that there exists a large portion of non-commonsense-knowledge instances in the two datasets, and a large performance gap on these two subsets.
- Score: 58.5342212738895
- License:
- Abstract: Commonsense datasets have been well developed in Natural Language Processing, mainly through crowdsource human annotation. However, there are debates on the genuineness of commonsense reasoning benchmarks. In specific, a significant portion of instances in some commonsense benchmarks do not concern commonsense knowledge. That problem would undermine the measurement of the true commonsense reasoning ability of evaluated models. It is also suggested that the problem originated from a blurry concept of commonsense knowledge, as distinguished from other types of knowledge. To demystify all of the above claims, in this study, we survey existing definitions of commonsense knowledge, ground into the three frameworks for defining concepts, and consolidate them into a multi-framework unified definition of commonsense knowledge (so-called consolidated definition). We then use the consolidated definition for annotations and experiments on the CommonsenseQA and CommonsenseQA 2.0 datasets to examine the above claims. Our study shows that there exists a large portion of non-commonsense-knowledge instances in the two datasets, and a large performance gap on these two subsets where Large Language Models (LLMs) perform worse on commonsense-knowledge instances.
Related papers
- CANDLE: Iterative Conceptualization and Instantiation Distillation from Large Language Models for Commonsense Reasoning [45.62134354858683]
CANDLE is a framework that iteratively performs conceptualization and instantiation over commonsense knowledge bases.
By applying CANDLE to ATOMIC, we construct a comprehensive knowledge base comprising six million conceptualizations and instantiated commonsense knowledge triples.
arXiv Detail & Related papers (2024-01-14T13:24:30Z) - CORECODE: A Common Sense Annotated Dialogue Dataset with Benchmark Tasks
for Chinese Large Language Models [42.5532503036805]
CORECODE is a dataset that contains abundant commonsense knowledge manually annotated on dyadic dialogues.
We categorize commonsense knowledge in everyday conversations into three dimensions: entity, event, and social interaction.
We collect 76,787 commonsense knowledge annotations from 19,700 dialogues through crowdsourcing.
arXiv Detail & Related papers (2023-12-20T09:06:18Z) - Decker: Double Check with Heterogeneous Knowledge for Commonsense Fact
Verification [80.31112722910787]
We propose Decker, a commonsense fact verification model that is capable of bridging heterogeneous knowledge.
Experimental results on two commonsense fact verification benchmark datasets, CSQA2.0 and CREAK demonstrate the effectiveness of our Decker.
arXiv Detail & Related papers (2023-05-10T06:28:16Z) - Visually Grounded Commonsense Knowledge Acquisition [132.42003872906062]
Large-scale commonsense knowledge bases empower a broad range of AI applications.
Visual perception contains rich commonsense knowledge about real-world entities.
We present CLEVER, which formulates CKE as a distantly supervised multi-instance learning problem.
arXiv Detail & Related papers (2022-11-22T07:00:16Z) - CIKQA: Learning Commonsense Inference with a Unified
Knowledge-in-the-loop QA Paradigm [120.98789964518562]
We argue that due to the large scale of commonsense knowledge, it is infeasible to annotate a large enough training set for each task to cover all commonsense for learning.
We focus on investigating models' commonsense inference capabilities from two perspectives.
We name the benchmark as Commonsense Inference with Knowledge-in-the-loop Question Answering (CIKQA)
arXiv Detail & Related papers (2022-10-12T14:32:39Z) - Generated Knowledge Prompting for Commonsense Reasoning [53.88983683513114]
We propose generating knowledge statements directly from a language model with a generic prompt format.
This approach improves performance of both off-the-shelf and finetuned language models on four commonsense reasoning tasks.
Notably, we find that a model's predictions can improve when using its own generated knowledge.
arXiv Detail & Related papers (2021-10-15T21:58:03Z) - Commonsense Knowledge in Word Associations and ConceptNet [37.751909219863585]
This paper presents an in-depth comparison of two large-scale resources of general knowledge: ConcpetNet and SWOW.
We examine the structure, overlap and differences between the two graphs, as well as the extent to which they encode situational commonsense knowledge.
arXiv Detail & Related papers (2021-09-20T06:06:30Z) - Dimensions of Commonsense Knowledge [60.49243784752026]
We survey a wide range of popular commonsense sources with a special focus on their relations.
We consolidate these relations into 13 knowledge dimensions, each abstracting over more specific relations found in sources.
arXiv Detail & Related papers (2021-01-12T17:52:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.