Summarization of Opinionated Political Documents with Varied Perspectives
- URL: http://arxiv.org/abs/2411.04093v1
- Date: Wed, 06 Nov 2024 18:14:48 GMT
- Title: Summarization of Opinionated Political Documents with Varied Perspectives
- Authors: Nicholas Deas, Kathleen McKeown,
- Abstract summary: Models capable of generating accurate summaries of diverse perspectives can help reduce such polarization by exposing users to alternative perspectives.
We introduce a novel dataset and task for independently summarizing each political perspective in a set of passages from opinionated news articles.
We benchmark 10 models of varying sizes and architectures through both automatic and human evaluation.
- Score: 11.399915001583059
- License:
- Abstract: Global partisan hostility and polarization has increased, and this polarization is heightened around presidential elections. Models capable of generating accurate summaries of diverse perspectives can help reduce such polarization by exposing users to alternative perspectives. In this work, we introduce a novel dataset and task for independently summarizing each political perspective in a set of passages from opinionated news articles. For this task, we propose a framework for evaluating different dimensions of perspective summary performance. We benchmark 10 models of varying sizes and architectures through both automatic and human evaluation. While recent models like GPT-4o perform well on this task, we find that all models struggle to generate summaries faithful to the intended perspective. Our analysis of summaries focuses on how extraction behavior depends on the features of the input documents.
Related papers
- P^3SUM: Preserving Author's Perspective in News Summarization with Diffusion Language Models [57.571395694391654]
We find that existing approaches alter the political opinions and stances of news articles in more than 50% of summaries.
We propose P3SUM, a diffusion model-based summarization approach controlled by political perspective classifiers.
Experiments on three news summarization datasets demonstrate that P3SUM outperforms state-of-the-art summarization systems.
arXiv Detail & Related papers (2023-11-16T10:14:28Z) - Fair Abstractive Summarization of Diverse Perspectives [103.08300574459783]
A fair summary should provide a comprehensive coverage of diverse perspectives without underrepresenting certain groups.
We first formally define fairness in abstractive summarization as not underrepresenting perspectives of any groups of people.
We propose four reference-free automatic metrics by measuring the differences between target and source perspectives.
arXiv Detail & Related papers (2023-11-14T03:38:55Z) - NEWTS: A Corpus for News Topic-Focused Summarization [9.872518517174498]
This paper introduces the first topical summarization corpus, based on the well-known CNN/Dailymail dataset.
We evaluate a range of existing techniques and analyze the effectiveness of different prompting methods.
arXiv Detail & Related papers (2022-05-31T10:01:38Z) - NeuS: Neutral Multi-News Summarization for Mitigating Framing Bias [54.89737992911079]
We propose a new task, a neutral summary generation from multiple news headlines of the varying political spectrum.
One of the most interesting observations is that generation models can hallucinate not only factually inaccurate or unverifiable content, but also politically biased content.
arXiv Detail & Related papers (2022-04-11T07:06:01Z) - Aspect-Controllable Opinion Summarization [58.5308638148329]
We propose an approach that allows the generation of customized summaries based on aspect queries.
Using a review corpus, we create a synthetic training dataset of (review, summary) pairs enriched with aspect controllers.
We fine-tune a pretrained model using our synthetic dataset and generate aspect-specific summaries by modifying the aspect controllers.
arXiv Detail & Related papers (2021-09-07T16:09:17Z) - Unsupervised Video Summarization via Multi-source Features [4.387757291346397]
Video summarization aims at generating a compact yet representative visual summary that conveys the essence of the original video.
We propose the incorporation of multiple feature sources with chunk and stride fusion to provide more information about the visual content.
For a comprehensive evaluation on the two benchmarks TVSum and SumMe, we compare our method with four state-of-the-art approaches.
arXiv Detail & Related papers (2021-05-26T13:12:46Z) - Aspect Based Sentiment Analysis with Aspect-Specific Opinion Spans [66.77264982885086]
We present a neat and effective structured attention model by aggregating multiple linear-chain CRFs.
Such a design allows the model to extract aspect-specific opinion spans and then evaluate sentiment polarity by exploiting the extracted opinion features.
arXiv Detail & Related papers (2020-10-06T13:18:35Z) - A Revised Generative Evaluation of Visual Dialogue [80.17353102854405]
We propose a revised evaluation scheme for the VisDial dataset.
We measure consensus between answers generated by the model and a set of relevant answers.
We release these sets and code for the revised evaluation scheme as DenseVisDial.
arXiv Detail & Related papers (2020-04-20T13:26:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.