PocoLoco: A Point Cloud Diffusion Model of Human Shape in Loose Clothing
- URL: http://arxiv.org/abs/2411.04249v2
- Date: Fri, 08 Nov 2024 20:49:46 GMT
- Title: PocoLoco: A Point Cloud Diffusion Model of Human Shape in Loose Clothing
- Authors: Siddharth Seth, Rishabh Dabral, Diogo Luvizon, Marc Habermann, Ming-Hsuan Yang, Christian Theobalt, Adam Kortylewski,
- Abstract summary: PocoLoco is the first template-free, point-based, pose-conditioned generative model for 3D humans in loose clothing.
We formulate avatar clothing deformation as a conditional point-cloud generation task within the denoising diffusion framework.
We release a dataset of two subjects performing various poses in loose clothing with a total of 75K point clouds.
- Score: 97.83361232792214
- License:
- Abstract: Modeling a human avatar that can plausibly deform to articulations is an active area of research. We present PocoLoco -- the first template-free, point-based, pose-conditioned generative model for 3D humans in loose clothing. We motivate our work by noting that most methods require a parametric model of the human body to ground pose-dependent deformations. Consequently, they are restricted to modeling clothing that is topologically similar to the naked body and do not extend well to loose clothing. The few methods that attempt to model loose clothing typically require either canonicalization or a UV-parameterization and need to address the challenging problem of explicitly estimating correspondences for the deforming clothes. In this work, we formulate avatar clothing deformation as a conditional point-cloud generation task within the denoising diffusion framework. Crucially, our framework operates directly on unordered point clouds, eliminating the need for a parametric model or a clothing template. This also enables a variety of practical applications, such as point-cloud completion and pose-based editing -- important features for virtual human animation. As current datasets for human avatars in loose clothing are far too small for training diffusion models, we release a dataset of two subjects performing various poses in loose clothing with a total of 75K point clouds. By contributing towards tackling the challenging task of effectively modeling loose clothing and expanding the available data for training these models, we aim to set the stage for further innovation in digital humans. The source code is available at https://github.com/sidsunny/pocoloco .
Related papers
- CloSET: Modeling Clothed Humans on Continuous Surface with Explicit
Template Decomposition [36.39531876183322]
We propose to decompose explicit garment-related templates and then add pose-dependent wrinkles to them.
To tackle the seam artifact issues in recent state-of-the-art point-based methods, we propose to learn point features on a body surface.
Our approach is validated on two existing datasets and our newly introduced dataset, showing better clothing deformation results in unseen poses.
arXiv Detail & Related papers (2023-04-06T15:50:05Z) - Neural Point-based Shape Modeling of Humans in Challenging Clothing [75.75870953766935]
Parametric 3D body models like SMPL only represent minimally-clothed people and are hard to extend to clothing.
We extend point-based methods with a coarse stage, that replaces canonicalization with a learned pose-independent "coarse shape"
The approach works well for garments that both conform to, and deviate from, the body.
arXiv Detail & Related papers (2022-09-14T17:59:17Z) - The Power of Points for Modeling Humans in Clothing [60.00557674969284]
Currently it requires an artist to create 3D human avatars with realistic clothing that can move naturally.
We show that a 3D representation can capture varied topology at high resolution and that can be learned from data.
We train a neural network with a novel local clothing geometric feature to represent the shape of different outfits.
arXiv Detail & Related papers (2021-09-02T17:58:45Z) - Neural-GIF: Neural Generalized Implicit Functions for Animating People
in Clothing [49.32522765356914]
We learn to animate people in clothing as a function of the body pose.
We learn to map every point in the space to a canonical space, where a learned deformation field is applied to model non-rigid effects.
Neural-GIF can be trained on raw 3D scans and reconstructs detailed complex surface geometry and deformations.
arXiv Detail & Related papers (2021-08-19T17:25:16Z) - SMPLicit: Topology-aware Generative Model for Clothed People [65.84665248796615]
We introduce SMPLicit, a novel generative model to jointly represent body pose, shape and clothing geometry.
In the experimental section, we demonstrate SMPLicit can be readily used for fitting 3D scans and for 3D reconstruction in images of dressed people.
arXiv Detail & Related papers (2021-03-11T18:57:03Z) - Neural 3D Clothes Retargeting from a Single Image [91.5030622330039]
We present a method of clothes; generating the potential poses and deformations of a given 3D clothing template model to fit onto a person in a single RGB image.
The problem is fundamentally ill-posed as attaining the ground truth data is impossible, i.e. images of people wearing the different 3D clothing template model model at exact same pose.
We propose a semi-supervised learning framework that validates the physical plausibility of 3D deformation by matching with the prescribed body-to-cloth contact points and clothing to fit onto the unlabeled silhouette.
arXiv Detail & Related papers (2021-01-29T20:50:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.