Population estimation using 3D city modelling and Carto2S datasets -- A case study
- URL: http://arxiv.org/abs/2411.04612v1
- Date: Thu, 07 Nov 2024 10:52:57 GMT
- Title: Population estimation using 3D city modelling and Carto2S datasets -- A case study
- Authors: Jai G Singla,
- Abstract summary: With launch of Carto2S series of satellites, high resolution images (0.6-1.0 meters) are acquired and available for use.
High resolution Digital Elevation Model (DEM) with better accuracies can be generated using C2S multi-view and multi date datasets.
DEMs are further used to derive Digital terrain models (DTMs) and to extract accurate heights of the objects (building and tree) over the surface of the Earth.
- Score: 0.0
- License:
- Abstract: With the launch of Carto2S series of satellites, high resolution images (0.6-1.0 meters) are acquired and available for use. High resolution Digital Elevation Model (DEM) with better accuracies can be generated using C2S multi-view and multi date datasets. DEMs are further used as an input to derive Digital terrain models (DTMs) and to extract accurate heights of the objects (building and tree) over the surface of the Earth. Extracted building heights are validated with ground control points and can be used for generation of city modelling and resource estimation like population estimation, health planning, water and transport resource estimations. In this study, an attempt is made to assess the population of a township using high-resolution Indian remote sensing satellite datasets. We used Carto 2S multi-view data and generated a precise DEM and DTM over a city area. Using DEM and DTM datasets, accurate heights of the buildings are extracted which are further validated with ground data. Accurate building heights and high resolution imagery are used for generating accurate virtual 3D city model and assessing the number of floor and carpet area of the houses/ flats/ apartments. Population estimation of the area is made using derived information of no of houses/ flats/ apartments from the satellite datasets. Further, information about number of hospital and schools around the residential area is extracted from open street maps (OSM). Population estimation using satellite data and derived information from OSM datasets can prove to be very good tool for local administrator and decision makers.
Related papers
- Semi-supervised Learning from Street-View Images and OpenStreetMap for
Automatic Building Height Estimation [59.6553058160943]
We propose a semi-supervised learning (SSL) method of automatically estimating building height from Mapillary SVI and OpenStreetMap data.
The proposed method leads to a clear performance boosting in estimating building heights with a Mean Absolute Error (MAE) around 2.1 meters.
The preliminary result is promising and motivates our future work in scaling up the proposed method based on low-cost VGI data.
arXiv Detail & Related papers (2023-07-05T18:16:30Z) - Building Floorspace in China: A Dataset and Learning Pipeline [0.32228025627337864]
This paper provides a first milestone in measuring the floorspace of buildings in 40 major Chinese cities.
We use Sentinel-1 and -2 satellite images as our main data source.
We provide a detailed description of our data, algorithms, and evaluations.
arXiv Detail & Related papers (2023-03-03T21:45:36Z) - sat2pc: Estimating Point Cloud of Building Roofs from 2D Satellite
Images [1.8884278918443564]
We propose sat2pc, a deep learning architecture that predicts the point of a building roof from a single 2D satellite image.
Our results show that sat2pc was able to outperform existing baselines by at least 18.6%.
arXiv Detail & Related papers (2022-05-25T03:24:40Z) - SensatUrban: Learning Semantics from Urban-Scale Photogrammetric Point
Clouds [52.624157840253204]
We introduce SensatUrban, an urban-scale UAV photogrammetry point cloud dataset consisting of nearly three billion points collected from three UK cities, covering 7.6 km2.
Each point in the dataset has been labelled with fine-grained semantic annotations, resulting in a dataset that is three times the size of the previous existing largest photogrammetric point cloud dataset.
arXiv Detail & Related papers (2022-01-12T14:48:11Z) - Real-time Outdoor Localization Using Radio Maps: A Deep Learning
Approach [59.17191114000146]
LocUNet: A convolutional, end-to-end trained neural network (NN) for the localization task.
We show that LocUNet can localize users with state-of-the-art accuracy and enjoys high robustness to inaccuracies in the estimations of radio maps.
arXiv Detail & Related papers (2021-06-23T17:27:04Z) - Semantic Segmentation on Swiss3DCities: A Benchmark Study on Aerial
Photogrammetric 3D Pointcloud Dataset [67.44497676652173]
We introduce a new outdoor urban 3D pointcloud dataset, covering a total area of 2.7 $km2$, sampled from three Swiss cities.
The dataset is manually annotated for semantic segmentation with per-point labels, and is built using photogrammetry from images acquired by multirotors equipped with high-resolution cameras.
arXiv Detail & Related papers (2020-12-23T21:48:47Z) - Towards Semantic Segmentation of Urban-Scale 3D Point Clouds: A Dataset,
Benchmarks and Challenges [52.624157840253204]
We present an urban-scale photogrammetric point cloud dataset with nearly three billion richly annotated points.
Our dataset consists of large areas from three UK cities, covering about 7.6 km2 of the city landscape.
We evaluate the performance of state-of-the-art algorithms on our dataset and provide a comprehensive analysis of the results.
arXiv Detail & Related papers (2020-09-07T14:47:07Z) - HoliCity: A City-Scale Data Platform for Learning Holistic 3D Structures [39.2984574045825]
This dataset has 6,300 real-world panoramas that are accurately aligned with a CAD model downtown London with an area of 20 km2 times.
The ultimate goal of this dataset is to support real applications for city reconstruction, mapping, and augmented reality.
arXiv Detail & Related papers (2020-08-07T17:34:47Z) - RGB-D Salient Object Detection: A Survey [195.83586883670358]
We provide a comprehensive survey of RGB-D based SOD models from various perspectives.
We also review SOD models and popular benchmark datasets from this domain.
We discuss several challenges and open directions of RGB-D based SOD for future research.
arXiv Detail & Related papers (2020-08-01T10:01:32Z) - A Nearest Neighbor Network to Extract Digital Terrain Models from 3D
Point Clouds [1.6249267147413524]
We present an algorithm that operates on 3D-point clouds and estimates the underlying DTM for the scene using an end-to-end approach.
Our model learns neighborhood information and seamlessly integrates this with point-wise and block-wise global features.
arXiv Detail & Related papers (2020-05-21T15:54:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.