Complexity of Local Quantum Circuits under Nonunital Noise
- URL: http://arxiv.org/abs/2411.04819v1
- Date: Thu, 07 Nov 2024 15:57:31 GMT
- Title: Complexity of Local Quantum Circuits under Nonunital Noise
- Authors: Oles Shtanko, Kunal Sharma,
- Abstract summary: We show that geometrically local circuits in the presence of nonunital noise, in any dimension $dgeq 1$, can correct errors without mid-circuit measurements and extend to any depth.
This implies that local quantum dynamics subjected to sufficiently weak nonunital noise is computationally universal and nearly as hard to simulate as noiseless dynamics.
- Score: 0.0
- License:
- Abstract: It is widely accepted that noisy quantum devices are limited to logarithmic depth circuits unless mid-circuit measurements and error correction are employed. However, this conclusion holds only for unital error channels, such as depolarizing noise. Building on the idea of the "quantum refrigerator" [Ben-Or, Gottesman and Hassidim (2013)], we improve upon previous results and show that geometrically local circuits in the presence of nonunital noise, in any dimension $d\geq 1$, can correct errors without mid-circuit measurements and extend computation to any depth, with only polylogarithmic overhead in the depth and the number of qubits. This implies that local quantum dynamics subjected to sufficiently weak nonunital noise is computationally universal and nearly as hard to simulate as noiseless dynamics. Additionally, we quantify the contraction property of local random circuits in the presence of nonunital noise.
Related papers
- Classically estimating observables of noiseless quantum circuits [36.688706661620905]
We present a classical algorithm for estimating expectation values of arbitrary observables on most quantum circuits.
For non-classically-simulable input states or observables, the expectation values can be estimated by augmenting our algorithm with classical shadows of the relevant state or observable.
arXiv Detail & Related papers (2024-09-03T08:44:33Z) - Noise-induced shallow circuits and absence of barren plateaus [2.5295633594332334]
We show that any noise truncates' most quantum circuits to effectively logarithmic depth.
We then prove that quantum circuits under any non-unital noise exhibit lack of barren plateaus for cost functions composed of local observables.
arXiv Detail & Related papers (2024-03-20T19:00:49Z) - A noise-limiting quantum algorithm using mid-circuit measurements for
dynamical correlations at infinite temperature [0.0]
We introduce a quantum channel built out of mid-circuit measurements and feed-forward.
In the presence of a depolarizing channel it still displays a meaningful, non-zero signal in the large depth limit.
We showcase the noise resilience of this quantum channel on Quantinuum's H1-1 ion-trap quantum computer.
arXiv Detail & Related papers (2024-01-04T11:25:04Z) - Accurate and Honest Approximation of Correlated Qubit Noise [39.58317527488534]
We propose an efficient systematic construction of approximate noise channels, where their accuracy can be enhanced by incorporating noise components with higher qubit-qubit correlation degree.
We find that, for realistic noise strength typical for fixed-frequency superconducting qubits, correlated noise beyond two-qubit correlation can significantly affect the code simulation accuracy.
arXiv Detail & Related papers (2023-11-15T19:00:34Z) - A Lie Algebraic Theory of Barren Plateaus for Deep Parameterized Quantum Circuits [37.84307089310829]
Variational quantum computing schemes train a loss function by sending an initial state through a parametrized quantum circuit.
Despite their promise, the trainability of these algorithms is hindered by barren plateaus.
We present a general Lie algebra that provides an exact expression for the variance of the loss function of sufficiently deep parametrized quantum circuits.
arXiv Detail & Related papers (2023-09-17T18:14:10Z) - Scalable noisy quantum circuits for biased-noise qubits [37.69303106863453]
We consider biased-noise qubits affected only by bit-flip errors, which is motivated by existing systems of stabilized cat qubits.
For realistic noise models, phase-flip will not be negligible, but in the Pauli-Twirling approximation, we show that our benchmark could check the correctness of circuits containing up to $106$ gates.
arXiv Detail & Related papers (2023-05-03T11:27:50Z) - Can shallow quantum circuits scramble local noise into global white
noise? [0.0]
Shallow quantum circuits are believed to be the most promising candidates for achieving early practical quantum advantage.
We investigate what degree practical shallow quantum circuits scramble local noise into global white noise.
We find in all cases that the commutator norm is sufficiently small guaranteeing a very good performance of purification-based error mitigation.
arXiv Detail & Related papers (2023-02-02T05:10:14Z) - Noise effects on purity and quantum entanglement in terms of physical
implementability [27.426057220671336]
Quantum decoherence due to imperfect manipulation of quantum devices is a key issue in the noisy intermediate-scale quantum (NISQ) era.
Standard analyses in quantum information and quantum computation use error rates to parameterize quantum noise channels.
We propose to characterize the decoherence effect of a noise channel by the physical implementability of its inverse.
arXiv Detail & Related papers (2022-07-04T13:35:17Z) - Numerical Simulations of Noisy Quantum Circuits for Computational
Chemistry [51.827942608832025]
Near-term quantum computers can calculate the ground-state properties of small molecules.
We show how the structure of the computational ansatz as well as the errors induced by device noise affect the calculation.
arXiv Detail & Related papers (2021-12-31T16:33:10Z) - Achieving fault tolerance against amplitude-damping noise [1.7289359743609742]
We develop a protocol for fault-tolerant encoded quantum computing components in the presence of amplitude-damping noise.
We describe a universal set of fault-tolerant encoded gadgets and compute the pseudothreshold for the noise.
Our work demonstrates the possibility of applying the ideas of quantum fault tolerance to targeted noise models.
arXiv Detail & Related papers (2021-07-12T14:59:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.