Sampling-guided Heterogeneous Graph Neural Network with Temporal Smoothing for Scalable Longitudinal Data Imputation
- URL: http://arxiv.org/abs/2411.04899v1
- Date: Thu, 07 Nov 2024 17:41:07 GMT
- Title: Sampling-guided Heterogeneous Graph Neural Network with Temporal Smoothing for Scalable Longitudinal Data Imputation
- Authors: Zhaoyang Zhang, Ziqi Chen, Qiao Liu, Jinhan Xie, Hongtu Zhu,
- Abstract summary: We propose a novel framework, the Sampling-guided Heterogeneous Graph Neural Network (SHT-GNN), to tackle the challenge of missing data imputation.
By leveraging subject-wise mini-batch sampling and a multi-layer temporal smoothing mechanism, SHT-GNN efficiently scales to large datasets.
Experiments on both synthetic and real-world datasets, including the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset, demonstrate that SHT-GNN significantly outperforms existing imputation methods.
- Score: 17.81217890585335
- License:
- Abstract: In this paper, we propose a novel framework, the Sampling-guided Heterogeneous Graph Neural Network (SHT-GNN), to effectively tackle the challenge of missing data imputation in longitudinal studies. Unlike traditional methods, which often require extensive preprocessing to handle irregular or inconsistent missing data, our approach accommodates arbitrary missing data patterns while maintaining computational efficiency. SHT-GNN models both observations and covariates as distinct node types, connecting observation nodes at successive time points through subject-specific longitudinal subnetworks, while covariate-observation interactions are represented by attributed edges within bipartite graphs. By leveraging subject-wise mini-batch sampling and a multi-layer temporal smoothing mechanism, SHT-GNN efficiently scales to large datasets, while effectively learning node representations and imputing missing data. Extensive experiments on both synthetic and real-world datasets, including the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset, demonstrate that SHT-GNN significantly outperforms existing imputation methods, even with high missing data rates. The empirical results highlight SHT-GNN's robust imputation capabilities and superior performance, particularly in the context of complex, large-scale longitudinal data.
Related papers
- Improving age prediction: Utilizing LSTM-based dynamic forecasting for
data augmentation in multivariate time series analysis [16.91773394335563]
We propose a data augmentation and validation framework that utilizes dynamic forecasting with Long Short-Term Memory (LSTM) networks to enrich datasets.
The effectiveness of these augmented datasets was then compared with the original data using various deep learning models designed for chronological age prediction tasks.
arXiv Detail & Related papers (2023-12-11T22:47:26Z) - A Generative Self-Supervised Framework using Functional Connectivity in
fMRI Data [15.211387244155725]
Deep neural networks trained on Functional Connectivity (FC) networks extracted from functional Magnetic Resonance Imaging (fMRI) data have gained popularity.
Recent research on the application of Graph Neural Network (GNN) to FC suggests that exploiting the time-varying properties of the FC could significantly improve the accuracy and interpretability of the model prediction.
High cost of acquiring high-quality fMRI data and corresponding labels poses a hurdle to their application in real-world settings.
We propose a generative SSL approach that is tailored to effectively harnesstemporal information within dynamic FC.
arXiv Detail & Related papers (2023-12-04T16:14:43Z) - Efficient Heterogeneous Graph Learning via Random Projection [58.4138636866903]
Heterogeneous Graph Neural Networks (HGNNs) are powerful tools for deep learning on heterogeneous graphs.
Recent pre-computation-based HGNNs use one-time message passing to transform a heterogeneous graph into regular-shaped tensors.
We propose a hybrid pre-computation-based HGNN, named Random Projection Heterogeneous Graph Neural Network (RpHGNN)
arXiv Detail & Related papers (2023-10-23T01:25:44Z) - Label Deconvolution for Node Representation Learning on Large-scale
Attributed Graphs against Learning Bias [75.44877675117749]
We propose an efficient label regularization technique, namely Label Deconvolution (LD), to alleviate the learning bias by a novel and highly scalable approximation to the inverse mapping of GNNs.
Experiments demonstrate LD significantly outperforms state-of-the-art methods on Open Graph datasets Benchmark.
arXiv Detail & Related papers (2023-09-26T13:09:43Z) - MTS2Graph: Interpretable Multivariate Time Series Classification with
Temporal Evolving Graphs [1.1756822700775666]
We introduce a new framework for interpreting time series data by extracting and clustering the input representative patterns.
We run experiments on eight datasets of the UCR/UEA archive, along with HAR and PAM datasets.
arXiv Detail & Related papers (2023-06-06T16:24:27Z) - NeuroDAVIS: A neural network model for data visualization [0.0]
We introduce a novel unsupervised deep neural network model, called NeuroDAVIS, for data visualization.
NeuroDAVIS is capable of extracting important features from the data, without assuming any data distribution.
It has been shown theoritically that neighbourhood relationship of the data in high dimension remains preserved in lower dimension.
arXiv Detail & Related papers (2023-04-01T21:20:34Z) - Joint Edge-Model Sparse Learning is Provably Efficient for Graph Neural
Networks [89.28881869440433]
This paper provides the first theoretical characterization of joint edge-model sparse learning for graph neural networks (GNNs)
It proves analytically that both sampling important nodes and pruning neurons with the lowest-magnitude can reduce the sample complexity and improve convergence without compromising the test accuracy.
arXiv Detail & Related papers (2023-02-06T16:54:20Z) - Interpolation-based Correlation Reduction Network for Semi-Supervised
Graph Learning [49.94816548023729]
We propose a novel graph contrastive learning method, termed Interpolation-based Correlation Reduction Network (ICRN)
In our method, we improve the discriminative capability of the latent feature by enlarging the margin of decision boundaries.
By combining the two settings, we extract rich supervision information from both the abundant unlabeled nodes and the rare yet valuable labeled nodes for discnative representation learning.
arXiv Detail & Related papers (2022-06-06T14:26:34Z) - EIGNN: Efficient Infinite-Depth Graph Neural Networks [51.97361378423152]
Graph neural networks (GNNs) are widely used for modelling graph-structured data in numerous applications.
Motivated by this limitation, we propose a GNN model with infinite depth, which we call Efficient Infinite-Depth Graph Neural Networks (EIGNN)
We show that EIGNN has a better ability to capture long-range dependencies than recent baselines, and consistently achieves state-of-the-art performance.
arXiv Detail & Related papers (2022-02-22T08:16:58Z) - Deep Cellular Recurrent Network for Efficient Analysis of Time-Series
Data with Spatial Information [52.635997570873194]
This work proposes a novel deep cellular recurrent neural network (DCRNN) architecture to process complex multi-dimensional time series data with spatial information.
The proposed architecture achieves state-of-the-art performance while utilizing substantially less trainable parameters when compared to comparable methods in the literature.
arXiv Detail & Related papers (2021-01-12T20:08:18Z) - MG-GCN: Fast and Effective Learning with Mix-grained Aggregators for
Training Large Graph Convolutional Networks [20.07942308916373]
Graph convolutional networks (GCNs) generate the embeddings of nodes by aggregating the information of their neighbors layer by layer.
The high computational and memory cost of GCNs makes it infeasible for training on large graphs.
A new model, named Mix-grained GCN (MG-GCN), achieves state-of-the-art performance in terms of accuracy, training speed, convergence speed, and memory cost.
arXiv Detail & Related papers (2020-11-17T14:51:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.