Uncovering Hidden Subspaces in Video Diffusion Models Using Re-Identification
- URL: http://arxiv.org/abs/2411.04956v1
- Date: Thu, 07 Nov 2024 18:32:00 GMT
- Title: Uncovering Hidden Subspaces in Video Diffusion Models Using Re-Identification
- Authors: Mischa Dombrowski, Hadrien Reynaud, Bernhard Kainz,
- Abstract summary: We show that models trained on synthetic data for specific downstream tasks still perform worse than those trained on real data.
This discrepancy may be partly due to the sampling space being a subspace of the training videos.
In this paper, we first show that training privacy-preserving models in latent space is computationally more efficient and generalize better.
- Score: 6.408114351192012
- License:
- Abstract: Latent Video Diffusion Models can easily deceive casual observers and domain experts alike thanks to the produced image quality and temporal consistency. Beyond entertainment, this creates opportunities around safe data sharing of fully synthetic datasets, which are crucial in healthcare, as well as other domains relying on sensitive personal information. However, privacy concerns with this approach have not fully been addressed yet, and models trained on synthetic data for specific downstream tasks still perform worse than those trained on real data. This discrepancy may be partly due to the sampling space being a subspace of the training videos, effectively reducing the training data size for downstream models. Additionally, the reduced temporal consistency when generating long videos could be a contributing factor. In this paper, we first show that training privacy-preserving models in latent space is computationally more efficient and generalize better. Furthermore, to investigate downstream degradation factors, we propose to use a re-identification model, previously employed as a privacy preservation filter. We demonstrate that it is sufficient to train this model on the latent space of the video generator. Subsequently, we use these models to evaluate the subspace covered by synthetic video datasets and thus introduce a new way to measure the faithfulness of generative machine learning models. We focus on a specific application in healthcare echocardiography to illustrate the effectiveness of our novel methods. Our findings indicate that only up to 30.8% of the training videos are learned in latent video diffusion models, which could explain the lack of performance when training downstream tasks on synthetic data.
Related papers
- Towards Reliable Verification of Unauthorized Data Usage in Personalized Text-to-Image Diffusion Models [23.09033991200197]
New personalization techniques have been proposed to customize the pre-trained base models for crafting images with specific themes or styles.
Such a lightweight solution poses a new concern regarding whether the personalized models are trained from unauthorized data.
We introduce SIREN, a novel methodology to proactively trace unauthorized data usage in black-box personalized text-to-image diffusion models.
arXiv Detail & Related papers (2024-10-14T12:29:23Z) - Learning Human Action Recognition Representations Without Real Humans [66.61527869763819]
We present a benchmark that leverages real-world videos with humans removed and synthetic data containing virtual humans to pre-train a model.
We then evaluate the transferability of the representation learned on this data to a diverse set of downstream action recognition benchmarks.
Our approach outperforms previous baselines by up to 5%.
arXiv Detail & Related papers (2023-11-10T18:38:14Z) - Segue: Side-information Guided Generative Unlearnable Examples for
Facial Privacy Protection in Real World [64.4289385463226]
We propose Segue: Side-information guided generative unlearnable examples.
To improve transferability, we introduce side information such as true labels and pseudo labels.
It can resist JPEG compression, adversarial training, and some standard data augmentations.
arXiv Detail & Related papers (2023-10-24T06:22:37Z) - Privacy Distillation: Reducing Re-identification Risk of Multimodal
Diffusion Models [11.659461421660613]
We introduce Privacy Distillation, a framework that allows a text-to-image generative model to teach another model without exposing it to identifiable data.
Our solution consists of (1) training a first diffusion model on real data (2) generating a synthetic dataset using this model and filtering it to exclude images with a re-identifiability risk (3) training a second diffusion model on the filtered synthetic data only.
arXiv Detail & Related papers (2023-06-02T07:44:00Z) - GSURE-Based Diffusion Model Training with Corrupted Data [35.56267114494076]
We propose a novel training technique for generative diffusion models based only on corrupted data.
We demonstrate our technique on face images as well as Magnetic Resonance Imaging (MRI)
arXiv Detail & Related papers (2023-05-22T15:27:20Z) - Extracting Training Data from Diffusion Models [77.11719063152027]
We show that diffusion models memorize individual images from their training data and emit them at generation time.
With a generate-and-filter pipeline, we extract over a thousand training examples from state-of-the-art models.
We train hundreds of diffusion models in various settings to analyze how different modeling and data decisions affect privacy.
arXiv Detail & Related papers (2023-01-30T18:53:09Z) - Reconstructing Training Data from Model Gradient, Provably [68.21082086264555]
We reconstruct the training samples from a single gradient query at a randomly chosen parameter value.
As a provable attack that reveals sensitive training data, our findings suggest potential severe threats to privacy.
arXiv Detail & Related papers (2022-12-07T15:32:22Z) - Contrastive Model Inversion for Data-Free Knowledge Distillation [60.08025054715192]
We propose Contrastive Model Inversion, where the data diversity is explicitly modeled as an optimizable objective.
Our main observation is that, under the constraint of the same amount of data, higher data diversity usually indicates stronger instance discrimination.
Experiments on CIFAR-10, CIFAR-100, and Tiny-ImageNet demonstrate that CMI achieves significantly superior performance when the generated data are used for knowledge distillation.
arXiv Detail & Related papers (2021-05-18T15:13:00Z) - Data Impressions: Mining Deep Models to Extract Samples for Data-free
Applications [26.48630545028405]
"Data Impressions" act as proxy to the training data and can be used to realize a variety of tasks.
We show the applicability of data impressions in solving several computer vision tasks.
arXiv Detail & Related papers (2021-01-15T11:37:29Z) - A Plug-and-play Scheme to Adapt Image Saliency Deep Model for Video Data [54.198279280967185]
This paper proposes a novel plug-and-play scheme to weakly retrain a pretrained image saliency deep model for video data.
Our method is simple yet effective for adapting any off-the-shelf pre-trained image saliency deep model to obtain high-quality video saliency detection.
arXiv Detail & Related papers (2020-08-02T13:23:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.