SVDQuant: Absorbing Outliers by Low-Rank Components for 4-Bit Diffusion Models
- URL: http://arxiv.org/abs/2411.05007v3
- Date: Mon, 03 Mar 2025 18:16:59 GMT
- Title: SVDQuant: Absorbing Outliers by Low-Rank Components for 4-Bit Diffusion Models
- Authors: Muyang Li, Yujun Lin, Zhekai Zhang, Tianle Cai, Xiuyu Li, Junxian Guo, Enze Xie, Chenlin Meng, Jun-Yan Zhu, Song Han,
- Abstract summary: Diffusion models can generate high-quality images, but as they scale, rising memory demands and higher latency pose deployment challenges.<n>We propose SVDQuant, a new 4-bit quantization paradigm to overcome this limitation.<n>We reduce the memory usage for the 12B FLUX.1 models by 3.5$times$, achieving 3.0$times$ speedup over the 4-bit weight-only quantization (W4A16) baseline.
- Score: 58.5019443418822
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Diffusion models can effectively generate high-quality images. However, as they scale, rising memory demands and higher latency pose substantial deployment challenges. In this work, we aim to accelerate diffusion models by quantizing their weights and activations to 4 bits. At such an aggressive level, both weights and activations are highly sensitive, where existing post-training quantization methods like smoothing become insufficient. To overcome this limitation, we propose SVDQuant, a new 4-bit quantization paradigm. Different from smoothing, which redistributes outliers between weights and activations, our approach absorbs these outliers using a low-rank branch. We first consolidate the outliers by shifting them from activations to weights. Then, we use a high-precision, low-rank branch to take in the weight outliers with Singular Value Decomposition (SVD), while a low-bit quantized branch handles the residuals. This process eases the quantization on both sides. However, naively running the low-rank branch independently incurs significant overhead due to extra data movement of activations, negating the quantization speedup. To address this, we co-design an inference engine Nunchaku that fuses the kernels of the low-rank branch into those of the low-bit branch to cut off redundant memory access. It can also seamlessly support off-the-shelf low-rank adapters (LoRAs) without re-quantization. Extensive experiments on SDXL, PixArt-$\Sigma$, and FLUX.1 validate the effectiveness of SVDQuant in preserving image quality. We reduce the memory usage for the 12B FLUX.1 models by 3.5$\times$, achieving 3.0$\times$ speedup over the 4-bit weight-only quantization (W4A16) baseline on the 16GB laptop 4090 GPU with INT4 precision. On the latest RTX 5090 desktop with Blackwell architecture, we achieve a 3.1$\times$ speedup compared to the W4A16 model using NVFP4 precision.
Related papers
- KurTail : Kurtosis-based LLM Quantization [51.24081396305435]
KurTail is a new post-training quantization scheme that mitigates outliers in the activations of large language models.
It offers a 13.3% boost in MMLU accuracy and a 15.5% drop in Wiki perplexity compared to QuaRot.
It also outperforms SpinQuant with a 2.6% MMLU gain and reduces perplexity by 2.9%, all while reducing the training cost.
arXiv Detail & Related papers (2025-03-03T12:43:06Z) - ResQ: Mixed-Precision Quantization of Large Language Models with Low-Rank Residuals [10.860081994662645]
Post-training quantization of large language models (LLMs) holds the promise in reducing the prohibitive computational cost at inference time.
We propose ResQ, a PTQ method that pushes further the state-of-the-art.
We demonstrate that ResQ outperforms recent uniform and mixed precision PTQ methods on a variety of benchmarks.
arXiv Detail & Related papers (2024-12-18T22:01:55Z) - COMET: Towards Partical W4A4KV4 LLMs Serving [37.30529940231099]
Quantization is a compression technology to reduce the overhead of serving large language models (LLMs) on terminal devices and in cloud data centers.
We propose a novel mixed-precision quantization algorithm (FMPQ) that compresses most activations into 4-bit with negligible accuracy loss.
We integrate the optimized W4Ax kernel into our inference framework, COMET, and provide efficient management to support popular LLMs.
arXiv Detail & Related papers (2024-10-16T02:16:53Z) - FlatQuant: Flatness Matters for LLM Quantization [58.28221892035609]
We propose FlatQuant, a new post-training quantization approach to enhance flatness of weights and activations.
Our approach identifies optimal affine transformations tailored to each linear layer, calibrated in hours via a lightweight objective runtime.
For inference latency, FlatQuant reduces the slowdown induced by pre-quantization transformation from 0.26x of QuaRot to merely $textbf0.07x$, bringing up to $textbf2.3x$ speedup for prefill and $textbf1.7x$ speedup for decoding.
arXiv Detail & Related papers (2024-10-12T08:10:28Z) - 2DQuant: Low-bit Post-Training Quantization for Image Super-Resolution [83.09117439860607]
Low-bit quantization has become widespread for compressing image super-resolution (SR) models for edge deployment.
It is notorious that low-bit quantization degrades the accuracy of SR models compared to their full-precision (FP) counterparts.
We present a dual-stage low-bit post-training quantization (PTQ) method for image super-resolution, namely 2DQuant, which achieves efficient and accurate SR under low-bit quantization.
arXiv Detail & Related papers (2024-06-10T06:06:11Z) - SpinQuant: LLM quantization with learned rotations [49.07335692298487]
Post-training quantization (PTQ) techniques applied to weights, activations, and the KV cache greatly reduce memory usage, latency, and power consumption of Large Language Models (LLMs)
We identify a collection of applicable rotation parameterizations that lead to identical outputs in full-precision Transformer architectures while enhancing quantization accuracy.
We propose SpinQuant, a novel approach that incorporates learned rotation matrices for optimal quantized network accuracy.
arXiv Detail & Related papers (2024-05-26T02:15:49Z) - SmoothQuant+: Accurate and Efficient 4-bit Post-Training
WeightQuantization for LLM [13.035063417593534]
Large language models (LLMs) have shown remarkable capabilities in various tasks.
Currently, 4-bit post-training quantization (PTQ) has achieved some success in LLMs.
We propose SmoothQuant+, an accurate and efficient 4-bit weight-only PTQ.
arXiv Detail & Related papers (2023-12-06T11:10:55Z) - QUIK: Towards End-to-End 4-Bit Inference on Generative Large Language
Models [57.04178959678024]
We show that the majority of inference computations for large generative models can be performed with both weights and activations being cast to 4 bits.
We achieve this via a hybrid quantization strategy called QUIK, which compresses most of the weights and activations to 4-bit.
We provide GPU kernels matching the QUIK format with highly-efficient layer-wise runtimes, which lead to practical end-to-end throughput improvements of up to 3.4x.
arXiv Detail & Related papers (2023-10-13T17:15:05Z) - SqueezeLLM: Dense-and-Sparse Quantization [80.32162537942138]
Main bottleneck for generative inference with LLMs is memory bandwidth, rather than compute, for single batch inference.
We introduce SqueezeLLM, a post-training quantization framework that enables lossless compression to ultra-low precisions of up to 3-bit.
Our framework incorporates two novel ideas: (i) sensitivity-based non-uniform quantization, which searches for the optimal bit precision assignment based on second-order information; and (ii) the Dense-and-Sparse decomposition that stores outliers and sensitive weight values in an efficient sparse format.
arXiv Detail & Related papers (2023-06-13T08:57:54Z) - Dynamic Dual Trainable Bounds for Ultra-low Precision Super-Resolution
Networks [82.18396309806577]
We propose a novel activation quantizer, referred to as Dynamic Dual Trainable Bounds (DDTB)
Our DDTB exhibits significant performance improvements in ultra-low precision.
For example, our DDTB achieves a 0.70dB PSNR increase on Urban100 benchmark when quantizing EDSR to 2-bit and scaling up output images to x4.
arXiv Detail & Related papers (2022-03-08T04:26:18Z) - Q-ASR: Integer-only Zero-shot Quantization for Efficient Speech
Recognition [65.7040645560855]
We propose Q-ASR, an integer-only, zero-shot quantization scheme for ASR models.
We show negligible WER change as compared to the full-precision baseline models.
Q-ASR exhibits a large compression rate of more than 4x with small WER degradation.
arXiv Detail & Related papers (2021-03-31T06:05:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.