Multimodal Quantum Natural Language Processing: A Novel Framework for using Quantum Methods to Analyse Real Data
- URL: http://arxiv.org/abs/2411.05023v1
- Date: Tue, 29 Oct 2024 19:03:43 GMT
- Title: Multimodal Quantum Natural Language Processing: A Novel Framework for using Quantum Methods to Analyse Real Data
- Authors: Hala Hawashin,
- Abstract summary: This thesis explores how quantum computational methods can enhance the compositional modeling of language.
Specifically, it advances Multimodal Quantum Natural Language Processing (MQNLP) by applying the Lambeq toolkit.
Results indicate that syntax-based models, particularly DisCoCat and TreeReader, excel in effectively capturing grammatical structures.
- Score: 0.0
- License:
- Abstract: Despite significant advances in quantum computing across various domains, research on applying quantum approaches to language compositionality - such as modeling linguistic structures and interactions - remains limited. This gap extends to the integration of quantum language data with real-world data from sources like images, video, and audio. This thesis explores how quantum computational methods can enhance the compositional modeling of language through multimodal data integration. Specifically, it advances Multimodal Quantum Natural Language Processing (MQNLP) by applying the Lambeq toolkit to conduct a comparative analysis of four compositional models and evaluate their influence on image-text classification tasks. Results indicate that syntax-based models, particularly DisCoCat and TreeReader, excel in effectively capturing grammatical structures, while bag-of-words and sequential models struggle due to limited syntactic awareness. These findings underscore the potential of quantum methods to enhance language modeling and drive breakthroughs as quantum technology evolves.
Related papers
- A Few Shot Learning Scheme for Quantum Natural Language Processing [0.0]
We develop a framework to implement Few Shot Learning for Quantum Natural Language Processing.
This framework is put to the test to explore its behaviour and its power in extracting useful work from each call to a quantum system.
arXiv Detail & Related papers (2024-09-18T16:24:51Z) - Quantum Multimodal Contrastive Learning Framework [0.0]
We propose a novel framework for multimodal contrastive learning utilizing a quantum encoder to integrate EEG (electroencephalogram) and image data.
We demonstrate that the quantum encoder effectively captures intricate patterns within EEG signals and image features, facilitating improved contrastive learning across modalities.
arXiv Detail & Related papers (2024-08-25T19:08:43Z) - Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - Multimodal deep representation learning for quantum cross-platform
verification [60.01590250213637]
Cross-platform verification, a critical undertaking in the realm of early-stage quantum computing, endeavors to characterize the similarity of two imperfect quantum devices executing identical algorithms.
We introduce an innovative multimodal learning approach, recognizing that the formalism of data in this task embodies two distinct modalities.
We devise a multimodal neural network to independently extract knowledge from these modalities, followed by a fusion operation to create a comprehensive data representation.
arXiv Detail & Related papers (2023-11-07T04:35:03Z) - Quantum algorithms: A survey of applications and end-to-end complexities [90.05272647148196]
The anticipated applications of quantum computers span across science and industry.
We present a survey of several potential application areas of quantum algorithms.
We outline the challenges and opportunities in each area in an "end-to-end" fashion.
arXiv Detail & Related papers (2023-10-04T17:53:55Z) - Unified Quantum State Tomography and Hamiltonian Learning Using
Transformer Models: A Language-Translation-Like Approach for Quantum Systems [0.47831562043724657]
We introduce a new approach that employs the attention mechanism in transformer models to effectively merge quantum state tomography and Hamiltonian learning.
We demonstrate the effectiveness of our approach across various quantum systems, ranging from simple 2-qubit cases to more involved 2D antiferromagnetic Heisenberg structures.
arXiv Detail & Related papers (2023-04-24T11:20:44Z) - A didactic approach to quantum machine learning with a single qubit [68.8204255655161]
We focus on the case of learning with a single qubit, using data re-uploading techniques.
We implement the different proposed formulations in toy and real-world datasets using the qiskit quantum computing SDK.
arXiv Detail & Related papers (2022-11-23T18:25:32Z) - Quantum Semantic Communications for Resource-Efficient Quantum Networking [52.3355619190963]
This letter proposes a novel quantum semantic communications (QSC) framework exploiting advancements in quantum machine learning and quantum semantic representations.
The proposed framework achieves approximately 50-75% reduction in quantum communication resources needed, while achieving a higher quantum semantic fidelity.
arXiv Detail & Related papers (2022-05-05T03:49:19Z) - The Dawn of Quantum Natural Language Processing [13.482584048760485]
We train a quantum-enhanced Long Short-Term Memory network to perform the parts-of-speech tagging task.
A quantum-enhanced Transformer is proposed to perform the sentiment analysis based on the existing dataset.
arXiv Detail & Related papers (2021-10-13T05:46:57Z) - Facial Expression Recognition on a Quantum Computer [68.8204255655161]
We show a possible solution to facial expression recognition using a quantum machine learning approach.
We define a quantum circuit that manipulates the graphs adjacency matrices encoded into the amplitudes of some appropriately defined quantum states.
arXiv Detail & Related papers (2021-02-09T13:48:00Z) - Quantum Natural Language Processing on Near-Term Quantum Computers [0.0]
We describe a full-stack pipeline for natural language processing on near-term quantum computers, aka QNLP.
DisCoCat is a language-modelling framework that extends and complements the compositional structure of pregroup grammars.
We present a method for mapping DisCoCat diagrams to quantum circuits.
arXiv Detail & Related papers (2020-05-08T16:42:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.