SpecHub: Provable Acceleration to Multi-Draft Speculative Decoding
- URL: http://arxiv.org/abs/2411.05289v1
- Date: Fri, 08 Nov 2024 02:47:07 GMT
- Title: SpecHub: Provable Acceleration to Multi-Draft Speculative Decoding
- Authors: Ryan Sun, Tianyi Zhou, Xun Chen, Lichao Sun,
- Abstract summary: Multi-Draft Speculative Decoding (MDSD) offers a promising solution by using a smaller draft model to generate multiple token sequences.
We present SpecHub, a novel, efficient sampling-verification method for MDSD that improves acceptance rates with only linear computational overhead.
- Score: 28.76164449548306
- License:
- Abstract: Large Language Models (LLMs) have become essential in advancing natural language processing (NLP) tasks, but their sequential token generation limits inference speed. Multi-Draft Speculative Decoding (MDSD) offers a promising solution by using a smaller draft model to generate multiple token sequences, which the target LLM verifies in parallel. However, current heuristic approaches, such as Recursive Rejection Sampling (RRS), suffer from low acceptance rates in subsequent drafts, limiting the advantages of using multiple drafts. Meanwhile, Optimal Transport with Membership Cost (OTM) can theoretically improve acceptance rates, but its computational cost is too high for real-time use. We present SpecHub, a novel, efficient sampling-verification method for MDSD that improves acceptance rates with only linear computational overhead. By simplifying the OTM problem into a compact Linear Programming model, SpecHub significantly reduces computational complexity. It further accelerates sampling by leveraging a sparse joint distribution, focusing computation on high-probability token sequences. In extensive experiments, Spechub consistently generates 0.05-0.27 and 0.02-0.16 more tokens per step than RRS and RRS without replacement. We attach our code at \url{https://github.com/MasterGodzilla/Speculative_decoding_OT}.
Related papers
- Enabling Efficient On-Device Fine-Tuning of LLMs Using Only Inference Engines [17.539008562641303]
Large Language Models (LLMs) are currently pre-trained and fine-tuned on large cloud servers.
Next frontier is LLM personalization, where a foundation model can be fine-tuned with user/task-specific data.
Fine-tuning on resource-constrained edge devices presents significant challenges due to substantial memory and computational demands.
arXiv Detail & Related papers (2024-09-23T20:14:09Z) - Adaptive Draft-Verification for Efficient Large Language Model Decoding [24.347886232342862]
Large language model (LLM) decoding involves generating a sequence of tokens based on a given context.
The typical autoregressive decoding method requires a separate forward pass through the model for each token generated.
We introduce ADED, which accelerates LLM decoding without requiring fine-tuning.
arXiv Detail & Related papers (2024-06-27T22:20:39Z) - Sparsity-Constraint Optimization via Splicing Iteration [1.3622424109977902]
We develop an algorithm named Sparsity-Constraint Optimization via sPlicing itEration (SCOPE)
SCOPE converges effectively without tuning parameters.
We apply SCOPE to solve quadratic optimization, learn sparse classifiers, and recover sparse Markov networks for binary variables.
Our open-source Python package skscope based on C++ implementation is publicly available on GitHub.
arXiv Detail & Related papers (2024-06-17T18:34:51Z) - Nearest Neighbor Speculative Decoding for LLM Generation and Attribution [87.3259169631789]
Nearest Speculative Decoding (NEST) is capable of incorporating real-world text spans of arbitrary length into the LM generations and providing attribution to their sources.
NEST significantly enhances the generation quality and attribution rate of the base LM across a variety of knowledge-intensive tasks.
In addition, NEST substantially improves the generation speed, achieving a 1.8x speedup in inference time when applied to Llama-2-Chat 70B.
arXiv Detail & Related papers (2024-05-29T17:55:03Z) - Hardware-Aware Parallel Prompt Decoding for Memory-Efficient Acceleration of LLM Inference [19.167604927651073]
Auto-regressive decoding of Large Language Models (LLMs) results in significant overheads in their hardware performance.
We propose a novel parallel prompt decoding that requires only $0.0002$% trainable parameters, enabling efficient training on a single A100-40GB GPU in just 16 hours.
Our approach demonstrates up to 2.49$times$ speedup and maintains a minimal memory overhead of just $0.0004$%.
arXiv Detail & Related papers (2024-05-28T22:19:30Z) - Parallel Decoding via Hidden Transfer for Lossless Large Language Model Acceleration [54.897493351694195]
We propose a novel parallel decoding approach, namely textithidden transfer, which decodes multiple successive tokens simultaneously in a single forward pass.
In terms of acceleration metrics, we outperform all the single-model acceleration techniques, including Medusa and Self-Speculative decoding.
arXiv Detail & Related papers (2024-04-18T09:17:06Z) - Multimodal Learned Sparse Retrieval with Probabilistic Expansion Control [66.78146440275093]
Learned retrieval (LSR) is a family of neural methods that encode queries and documents into sparse lexical vectors.
We explore the application of LSR to the multi-modal domain, with a focus on text-image retrieval.
Current approaches like LexLIP and STAIR require complex multi-step training on massive datasets.
Our proposed approach efficiently transforms dense vectors from a frozen dense model into sparse lexical vectors.
arXiv Detail & Related papers (2024-02-27T14:21:56Z) - Recursive Speculative Decoding: Accelerating LLM Inference via Sampling
Without Replacement [11.91629418177851]
Speculative decoding is an inference-accel method for large language models.
Recent works have advanced this method by establishing a draft-token tree.
We present Recursive Speculative Decoding (RSD), a novel tree-based method that samples draft tokens without replacement.
arXiv Detail & Related papers (2024-02-21T22:57:49Z) - Linear-time Minimum Bayes Risk Decoding with Reference Aggregation [52.1701152610258]
Minimum Bayes Risk (MBR) decoding is a text generation technique that has been shown to improve the quality of machine translations.
It requires the pairwise calculation of a utility metric, which has quadratic complexity.
We propose to approximate pairwise metric scores with scores calculated against aggregated reference representations.
arXiv Detail & Related papers (2024-02-06T18:59:30Z) - Parameter-efficient Tuning of Large-scale Multimodal Foundation Model [68.24510810095802]
We propose A graceful prompt framework for cross-modal transfer (Aurora) to overcome these challenges.
Considering the redundancy in existing architectures, we first utilize the mode approximation to generate 0.1M trainable parameters to implement the multimodal prompt tuning.
A thorough evaluation on six cross-modal benchmarks shows that it not only outperforms the state-of-the-art but even outperforms the full fine-tuning approach.
arXiv Detail & Related papers (2023-05-15T06:40:56Z) - Paraformer: Fast and Accurate Parallel Transformer for
Non-autoregressive End-to-End Speech Recognition [62.83832841523525]
We propose a fast and accurate parallel transformer, termed Paraformer.
It accurately predicts the number of output tokens and extract hidden variables.
It can attain comparable performance to the state-of-the-art AR transformer, with more than 10x speedup.
arXiv Detail & Related papers (2022-06-16T17:24:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.