Generalization, Expressivity, and Universality of Graph Neural Networks on Attributed Graphs
- URL: http://arxiv.org/abs/2411.05464v2
- Date: Tue, 26 Nov 2024 08:41:06 GMT
- Title: Generalization, Expressivity, and Universality of Graph Neural Networks on Attributed Graphs
- Authors: Levi Rauchwerger, Stefanie Jegelka, Ron Levie,
- Abstract summary: We analyze the universality and generalization of graph neural networks (GNNs) on attributed graphs with node attributes.
We prove a universal approximation theorem for GNNs and bounds generalization for GNNs on any data distribution of attributed graphs.
Our work extends and unites previous approaches which either derived theory only for graphs with no attributes, derived compact metrics under which GNNs are continuous but without separation power, or derived metrics under which GNNs are continuous and separate points.
- Score: 33.266521866968304
- License:
- Abstract: We analyze the universality and generalization of graph neural networks (GNNs) on attributed graphs, i.e., with node attributes. To this end, we propose pseudometrics over the space of all attributed graphs that describe the fine-grained expressivity of GNNs. Namely, GNNs are both Lipschitz continuous with respect to our pseudometrics and can separate attributed graphs that are distant in the metric. Moreover, we prove that the space of all attributed graphs is relatively compact with respect to our metrics. Based on these properties, we prove a universal approximation theorem for GNNs and generalization bounds for GNNs on any data distribution of attributed graphs. The proposed metrics compute the similarity between the structures of attributed graphs via a hierarchical optimal transport between computation trees. Our work extends and unites previous approaches which either derived theory only for graphs with no attributes, derived compact metrics under which GNNs are continuous but without separation power, or derived metrics under which GNNs are continuous and separate points but the space of graphs is not relatively compact, which prevents universal approximation and generalization analysis.
Related papers
- Generalization of Geometric Graph Neural Networks [84.01980526069075]
We study the generalization capabilities of geometric graph neural networks (GNNs)
We prove a generalization gap between the optimal empirical risk and the optimal statistical risk of this GNN.
The most important observation is that the generalization capability can be realized with one large graph instead of being limited to the size of the graph as in previous results.
arXiv Detail & Related papers (2024-09-08T18:55:57Z) - A Manifold Perspective on the Statistical Generalization of Graph Neural Networks [84.01980526069075]
We take a manifold perspective to establish the statistical generalization theory of GNNs on graphs sampled from a manifold in the spectral domain.
We prove that the generalization bounds of GNNs decrease linearly with the size of the graphs in the logarithmic scale, and increase linearly with the spectral continuity constants of the filter functions.
arXiv Detail & Related papers (2024-06-07T19:25:02Z) - Generalization of Graph Neural Networks through the Lens of Homomorphism [7.223313563198697]
We propose to study the generalization of Graph Neural Networks (GNNs) through a novel perspective - analyzing the entropy of graph homomorphism.
By linking graph homomorphism with information-theoretic measures, we derive generalization bounds for both graph and node classifications.
These bounds are capable of capturing subtleties inherent in various graph structures, including but not limited to paths, cycles and cliques.
arXiv Detail & Related papers (2024-03-10T03:51:59Z) - Seq-HGNN: Learning Sequential Node Representation on Heterogeneous Graph [57.2953563124339]
We propose a novel heterogeneous graph neural network with sequential node representation, namely Seq-HGNN.
We conduct extensive experiments on four widely used datasets from Heterogeneous Graph Benchmark (HGB) and Open Graph Benchmark (OGB)
arXiv Detail & Related papers (2023-05-18T07:27:18Z) - Relation Embedding based Graph Neural Networks for Handling
Heterogeneous Graph [58.99478502486377]
We propose a simple yet efficient framework to make the homogeneous GNNs have adequate ability to handle heterogeneous graphs.
Specifically, we propose Relation Embedding based Graph Neural Networks (RE-GNNs), which employ only one parameter per relation to embed the importance of edge type relations and self-loop connections.
arXiv Detail & Related papers (2022-09-23T05:24:18Z) - Discovering the Representation Bottleneck of Graph Neural Networks from
Multi-order Interactions [51.597480162777074]
Graph neural networks (GNNs) rely on the message passing paradigm to propagate node features and build interactions.
Recent works point out that different graph learning tasks require different ranges of interactions between nodes.
We study two common graph construction methods in scientific domains, i.e., emphK-nearest neighbor (KNN) graphs and emphfully-connected (FC) graphs.
arXiv Detail & Related papers (2022-05-15T11:38:14Z) - Meta-Weight Graph Neural Network: Push the Limits Beyond Global
Homophily [24.408557217909316]
Graph Neural Networks (GNNs) show strong expressive power on graph data mining.
However, not all graphs are homophilic, even in the same graph, the distributions may vary significantly.
We propose Meta Weight Graph Neural Network (MWGNN) to adaptively construct graph convolution layers for different nodes.
arXiv Detail & Related papers (2022-03-19T09:27:38Z) - On the approximation capability of GNNs in node
classification/regression tasks [4.141514895639094]
Graph Neural Networks (GNNs) are a broad class of connectionist models for graph processing.
We show that GNNs are universal approximators in probability for node classification/regression tasks.
arXiv Detail & Related papers (2021-06-16T17:46:51Z) - Distance Encoding: Design Provably More Powerful Neural Networks for
Graph Representation Learning [63.97983530843762]
Graph Neural Networks (GNNs) have achieved great success in graph representation learning.
GNNs generate identical representations for graph substructures that may in fact be very different.
More powerful GNNs, proposed recently by mimicking higher-order tests, are inefficient as they cannot sparsity of underlying graph structure.
We propose Distance Depiction (DE) as a new class of graph representation learning.
arXiv Detail & Related papers (2020-08-31T23:15:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.