FGGP: Fixed-Rate Gradient-First Gradual Pruning
- URL: http://arxiv.org/abs/2411.05500v1
- Date: Fri, 08 Nov 2024 12:02:25 GMT
- Title: FGGP: Fixed-Rate Gradient-First Gradual Pruning
- Authors: Lingkai Zhu, Can Deniz Bezek, Orcun Goksel,
- Abstract summary: We introduce a gradient-first magnitude-next strategy for choosing the parameters to prune, and show that a fixed-rate subselection criterion between these steps works better.
Our proposed fixed-rate gradient-first gradual pruning (FGGP) approach outperforms its state-of-the-art alternatives in most of the above experimental settings.
- Score: 2.0940682212182975
- License:
- Abstract: In recent years, the increasing size of deep learning models and their growing demand for computational resources have drawn significant attention to the practice of pruning neural networks, while aiming to preserve their accuracy. In unstructured gradual pruning, which sparsifies a network by gradually removing individual network parameters until a targeted network sparsity is reached, recent works show that both gradient and weight magnitudes should be considered. In this work, we show that such mechanism, e.g., the order of prioritization and selection criteria, is essential. We introduce a gradient-first magnitude-next strategy for choosing the parameters to prune, and show that a fixed-rate subselection criterion between these steps works better, in contrast to the annealing approach in the literature. We validate this on CIFAR-10 dataset, with multiple randomized initializations on both VGG-19 and ResNet-50 network backbones, for pruning targets of 90, 95, and 98% sparsity and for both initially dense and 50% sparse networks. Our proposed fixed-rate gradient-first gradual pruning (FGGP) approach outperforms its state-of-the-art alternatives in most of the above experimental settings, even occasionally surpassing the upperbound of corresponding dense network results, and having the highest ranking across the considered experimental settings.
Related papers
- Optimization Guarantees of Unfolded ISTA and ADMM Networks With Smooth
Soft-Thresholding [57.71603937699949]
We study optimization guarantees, i.e., achieving near-zero training loss with the increase in the number of learning epochs.
We show that the threshold on the number of training samples increases with the increase in the network width.
arXiv Detail & Related papers (2023-09-12T13:03:47Z) - Implicit Bias in Leaky ReLU Networks Trained on High-Dimensional Data [63.34506218832164]
In this work, we investigate the implicit bias of gradient flow and gradient descent in two-layer fully-connected neural networks with ReLU activations.
For gradient flow, we leverage recent work on the implicit bias for homogeneous neural networks to show that leakyally, gradient flow produces a neural network with rank at most two.
For gradient descent, provided the random variance is small enough, we show that a single step of gradient descent suffices to drastically reduce the rank of the network, and that the rank remains small throughout training.
arXiv Detail & Related papers (2022-10-13T15:09:54Z) - What to Prune and What Not to Prune at Initialization [0.0]
Post-training dropout based approaches achieve high sparsity.
Initialization pruning is more efficacious when it comes to scaling computation cost of the network.
The goal is to achieve higher sparsity while preserving performance.
arXiv Detail & Related papers (2022-09-06T03:48:10Z) - WeightMom: Learning Sparse Networks using Iterative Momentum-based
pruning [0.0]
We propose a weight based pruning approach in which the weights are pruned gradually based on their momentum of the previous iterations.
We evaluate our approach on networks such as AlexNet, VGG16 and ResNet50 with image classification datasets such as CIFAR-10 and CIFAR-100.
arXiv Detail & Related papers (2022-08-11T07:13:59Z) - Exploiting Adam-like Optimization Algorithms to Improve the Performance
of Convolutional Neural Networks [82.61182037130405]
gradient descent (SGD) is the main approach for training deep networks.
In this work, we compare Adam based variants based on the difference between the present and the past gradients.
We have tested ensemble of networks and the fusion with ResNet50 trained with gradient descent.
arXiv Detail & Related papers (2021-03-26T18:55:08Z) - Keep the Gradients Flowing: Using Gradient Flow to Study Sparse Network
Optimization [16.85167651136133]
We take a broader view of training sparse networks and consider the role of regularization, optimization and architecture choices on sparse models.
We show that gradient flow in sparse networks can be improved by reconsidering aspects of the architecture design and the training regime.
arXiv Detail & Related papers (2021-02-02T18:40:26Z) - Progressive Skeletonization: Trimming more fat from a network at
initialization [76.11947969140608]
We propose an objective to find a skeletonized network with maximum connection sensitivity.
We then propose two approximate procedures to maximize our objective.
Our approach provides remarkably improved performance on higher pruning levels.
arXiv Detail & Related papers (2020-06-16T11:32:47Z) - Revisiting Initialization of Neural Networks [72.24615341588846]
We propose a rigorous estimation of the global curvature of weights across layers by approximating and controlling the norm of their Hessian matrix.
Our experiments on Word2Vec and the MNIST/CIFAR image classification tasks confirm that tracking the Hessian norm is a useful diagnostic tool.
arXiv Detail & Related papers (2020-04-20T18:12:56Z) - MSE-Optimal Neural Network Initialization via Layer Fusion [68.72356718879428]
Deep neural networks achieve state-of-the-art performance for a range of classification and inference tasks.
The use of gradient combined nonvolutionity renders learning susceptible to novel problems.
We propose fusing neighboring layers of deeper networks that are trained with random variables.
arXiv Detail & Related papers (2020-01-28T18:25:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.