Tangled Program Graphs as an alternative to DRL-based control algorithms for UAVs
- URL: http://arxiv.org/abs/2411.05586v1
- Date: Fri, 08 Nov 2024 14:20:29 GMT
- Title: Tangled Program Graphs as an alternative to DRL-based control algorithms for UAVs
- Authors: Hubert Szolc, Karol Desnos, Tomasz Kryjak,
- Abstract summary: Deep reinforcement learning (DRL) is currently the most popular AI-based approach to autonomous vehicle control.
This approach has some significant drawbacks: high computational requirements and low explainability.
We propose to use Tangled Program Graphs (TPGs) as an alternative for DRL in control-related tasks.
- Score: 0.43695508295565777
- License:
- Abstract: Deep reinforcement learning (DRL) is currently the most popular AI-based approach to autonomous vehicle control. An agent, trained for this purpose in simulation, can interact with the real environment with a human-level performance. Despite very good results in terms of selected metrics, this approach has some significant drawbacks: high computational requirements and low explainability. Because of that, a DRL-based agent cannot be used in some control tasks, especially when safety is the key issue. Therefore we propose to use Tangled Program Graphs (TPGs) as an alternative for deep reinforcement learning in control-related tasks. In this approach, input signals are processed by simple programs that are combined in a graph structure. As a result, TPGs are less computationally demanding and their actions can be explained based on the graph structure. In this paper, we present our studies on the use of TPGs as an alternative for DRL in control-related tasks. In particular, we consider the problem of navigating an unmanned aerial vehicle (UAV) through the unknown environment based solely on the on-board LiDAR sensor. The results of our work show promising prospects for the use of TPGs in control related-tasks.
Related papers
- Autonomous Vehicle Controllers From End-to-End Differentiable Simulation [60.05963742334746]
We propose a differentiable simulator and design an analytic policy gradients (APG) approach to training AV controllers.
Our proposed framework brings the differentiable simulator into an end-to-end training loop, where gradients of environment dynamics serve as a useful prior to help the agent learn a more grounded policy.
We find significant improvements in performance and robustness to noise in the dynamics, as well as overall more intuitive human-like handling.
arXiv Detail & Related papers (2024-09-12T11:50:06Z) - DigiRL: Training In-The-Wild Device-Control Agents with Autonomous Reinforcement Learning [61.10299147201369]
This paper introduces a novel autonomous RL approach, called DigiRL, for training in-the-wild device control agents.
We build a scalable and parallelizable Android learning environment equipped with a VLM-based evaluator.
We demonstrate the effectiveness of DigiRL using the Android-in-the-Wild dataset, where our 1.3B VLM trained with RL achieves a 49.5% absolute improvement.
arXiv Detail & Related papers (2024-06-14T17:49:55Z) - ReACT: Reinforcement Learning for Controller Parametrization using
B-Spline Geometries [0.0]
This work presents a novel approach using deep reinforcement learning (DRL) with N-dimensional B-spline geometries (BSGs)
We focus on the control of parameter-variant systems, a class of systems with complex behavior which depends on the operating conditions.
We make the adaptation process more efficient by introducing BSGs to map the controller parameters which may depend on numerous operating conditions.
arXiv Detail & Related papers (2024-01-10T16:27:30Z) - Modelling, Positioning, and Deep Reinforcement Learning Path Tracking
Control of Scaled Robotic Vehicles: Design and Experimental Validation [3.807917169053206]
Scaled robotic cars are commonly equipped with a hierarchical control acthiecture that includes tasks dedicated to vehicle state estimation and control.
This paper covers both aspects by proposing (i) a federeted extended Kalman filter (FEKF) and (ii) a novel deep reinforcement learning (DRL) path tracking controller trained via an expert demonstrator.
The experimentally validated model is used for (i) supporting the design of the FEKF and (ii) serving as a digital twin for training the proposed DRL-based path tracking algorithm.
arXiv Detail & Related papers (2024-01-10T14:40:53Z) - Training Efficient Controllers via Analytic Policy Gradient [44.0762454494769]
Control design for robotic systems is complex and often requires solving an optimization to follow a trajectory accurately.
Online optimization approaches like Model Predictive Control (MPC) have been shown to achieve great tracking performance, but require high computing power.
We propose an Analytic Policy Gradient (APG) method to tackle this problem.
arXiv Detail & Related papers (2022-09-26T22:04:35Z) - Autonomous Platoon Control with Integrated Deep Reinforcement Learning
and Dynamic Programming [12.661547303266252]
It is more challenging to learn a stable and efficient car-following policy when there are multiple following vehicles in a platoon.
We adopt an integrated DRL and Dynamic Programming approach to learn autonomous platoon control policies.
We propose an algorithm, namely Finite-Horizon-DDPG with Sweeping through reduced state space.
arXiv Detail & Related papers (2022-06-15T13:45:47Z) - Verifying Learning-Based Robotic Navigation Systems [61.01217374879221]
We show how modern verification engines can be used for effective model selection.
Specifically, we use verification to detect and rule out policies that may demonstrate suboptimal behavior.
Our work is the first to demonstrate the use of verification backends for recognizing suboptimal DRL policies in real-world robots.
arXiv Detail & Related papers (2022-05-26T17:56:43Z) - Graph Reinforcement Learning for Radio Resource Allocation [13.290246410488727]
We resort to graph reinforcement learning for exploiting two kinds of relational priors inherent in many problems in wireless communications.
To design graph reinforcement learning framework systematically, we first conceive a method to transform state matrix into state graph.
We then propose a general method for graph neural networks to satisfy desirable permutation properties.
arXiv Detail & Related papers (2022-03-08T08:02:54Z) - Learning Dexterous Manipulation from Suboptimal Experts [69.8017067648129]
Relative Entropy Q-Learning (REQ) is a simple policy algorithm that combines ideas from successful offline and conventional RL algorithms.
We show how REQ is also effective for general off-policy RL, offline RL, and RL from demonstrations.
arXiv Detail & Related papers (2020-10-16T18:48:49Z) - Certified Reinforcement Learning with Logic Guidance [78.2286146954051]
We propose a model-free RL algorithm that enables the use of Linear Temporal Logic (LTL) to formulate a goal for unknown continuous-state/action Markov Decision Processes (MDPs)
The algorithm is guaranteed to synthesise a control policy whose traces satisfy the specification with maximal probability.
arXiv Detail & Related papers (2019-02-02T20:09:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.