Scaling Laws for Task-Optimized Models of the Primate Visual Ventral Stream
- URL: http://arxiv.org/abs/2411.05712v1
- Date: Fri, 08 Nov 2024 17:13:53 GMT
- Title: Scaling Laws for Task-Optimized Models of the Primate Visual Ventral Stream
- Authors: Abdulkadir Gokce, Martin Schrimpf,
- Abstract summary: We evaluate scaling laws for modeling the primate visual ventral stream (VVS)
We observe that while behavioral alignment continues to scale with larger models, neural alignment saturates.
Increased scaling is especially beneficial for higher-level visual areas, where small models trained on few samples exhibit only poor alignment.
- Score: 3.4526439922541705
- License:
- Abstract: When trained on large-scale object classification datasets, certain artificial neural network models begin to approximate core object recognition (COR) behaviors and neural response patterns in the primate visual ventral stream (VVS). While recent machine learning advances suggest that scaling model size, dataset size, and compute resources improve task performance, the impact of scaling on brain alignment remains unclear. In this study, we explore scaling laws for modeling the primate VVS by systematically evaluating over 600 models trained under controlled conditions on benchmarks spanning V1, V2, V4, IT and COR behaviors. We observe that while behavioral alignment continues to scale with larger models, neural alignment saturates. This observation remains true across model architectures and training datasets, even though models with stronger inductive bias and datasets with higher-quality images are more compute-efficient. Increased scaling is especially beneficial for higher-level visual areas, where small models trained on few samples exhibit only poor alignment. Finally, we develop a scaling recipe, indicating that a greater proportion of compute should be allocated to data samples over model size. Our results suggest that while scaling alone might suffice for alignment with human core object recognition behavior, it will not yield improved models of the brain's visual ventral stream with current architectures and datasets, highlighting the need for novel strategies in building brain-like models.
Related papers
- A Hitchhiker's Guide to Scaling Law Estimation [56.06982415792523]
Scaling laws predict the loss of a target machine learning model by extrapolating from easier-to-train models with fewer parameters or smaller training sets.
We estimate more than 1000 scaling laws, then derive a set of best practices for estimating scaling laws in new model families.
arXiv Detail & Related papers (2024-10-15T17:59:10Z) - Strong Model Collapse [16.071600606637908]
We consider a supervised regression setting and establish the existance of a strong form of the model collapse phenomenon.
Our results show that even the smallest fraction of synthetic data can lead to model collapse.
We investigate whether increasing model size, an approach aligned with current trends in training large language models, exacerbates or mitigates model collapse.
arXiv Detail & Related papers (2024-10-07T08:54:23Z) - A Dynamical Model of Neural Scaling Laws [79.59705237659547]
We analyze a random feature model trained with gradient descent as a solvable model of network training and generalization.
Our theory shows how the gap between training and test loss can gradually build up over time due to repeated reuse of data.
arXiv Detail & Related papers (2024-02-02T01:41:38Z) - The Languini Kitchen: Enabling Language Modelling Research at Different
Scales of Compute [66.84421705029624]
We introduce an experimental protocol that enables model comparisons based on equivalent compute, measured in accelerator hours.
We pre-process an existing large, diverse, and high-quality dataset of books that surpasses existing academic benchmarks in quality, diversity, and document length.
This work also provides two baseline models: a feed-forward model derived from the GPT-2 architecture and a recurrent model in the form of a novel LSTM with ten-fold throughput.
arXiv Detail & Related papers (2023-09-20T10:31:17Z) - Generative Forests [23.554594285885273]
We focus on generative AI for a type of data that still represent one of the most prevalent form of data: tabular data.
Our paper introduces a new powerful class of forest-based models fit for such tasks and a simple training algorithm with strong convergence guarantees.
Additional experiments on these tasks reveal that our models can be notably good contenders to diverse state of the art methods.
arXiv Detail & Related papers (2023-08-07T14:58:53Z) - An Information-Theoretic Analysis of Compute-Optimal Neural Scaling Laws [24.356906682593532]
We study the compute-optimal trade-off between model and training data set sizes for large neural networks.
Our result suggests a linear relation similar to that supported by the empirical analysis of chinchilla.
arXiv Detail & Related papers (2022-12-02T18:46:41Z) - Part-Based Models Improve Adversarial Robustness [57.699029966800644]
We show that combining human prior knowledge with end-to-end learning can improve the robustness of deep neural networks.
Our model combines a part segmentation model with a tiny classifier and is trained end-to-end to simultaneously segment objects into parts.
Our experiments indicate that these models also reduce texture bias and yield better robustness against common corruptions and spurious correlations.
arXiv Detail & Related papers (2022-09-15T15:41:47Z) - Towards Open-World Feature Extrapolation: An Inductive Graph Learning
Approach [80.8446673089281]
We propose a new learning paradigm with graph representation and learning.
Our framework contains two modules: 1) a backbone network (e.g., feedforward neural nets) as a lower model takes features as input and outputs predicted labels; 2) a graph neural network as an upper model learns to extrapolate embeddings for new features via message passing over a feature-data graph built from observed data.
arXiv Detail & Related papers (2021-10-09T09:02:45Z) - STAR: Sparse Transformer-based Action Recognition [61.490243467748314]
This work proposes a novel skeleton-based human action recognition model with sparse attention on the spatial dimension and segmented linear attention on the temporal dimension of data.
Experiments show that our model can achieve comparable performance while utilizing much less trainable parameters and achieve high speed in training and inference.
arXiv Detail & Related papers (2021-07-15T02:53:11Z) - Deep Reinforcement Learning Models Predict Visual Responses in the
Brain: A Preliminary Result [1.0323063834827415]
We use reinforcement learning to train neural network models to play a 3D computer game.
We find that these reinforcement learning models achieve neural response prediction accuracy scores in the early visual areas.
In contrast, the supervised neural network models yield better neural response predictions in the higher visual areas.
arXiv Detail & Related papers (2021-06-18T13:10:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.