News-Driven Stock Price Forecasting in Indian Markets: A Comparative Study of Advanced Deep Learning Models
- URL: http://arxiv.org/abs/2411.05788v1
- Date: Mon, 14 Oct 2024 15:30:06 GMT
- Title: News-Driven Stock Price Forecasting in Indian Markets: A Comparative Study of Advanced Deep Learning Models
- Authors: Kaushal Attaluri, Mukesh Tripathi, Srinithi Reddy, Shivendra,
- Abstract summary: Recent advancements in artificial intelligence (AI) and natural language processing (NLP) have significantly enhanced stock price prediction capabilities.
We leverage 30 years of historical data from national banks in India, sourced from the National Stock Exchange, to forecast stock prices.
Our approach utilizes state-of-the-art deep learning models, including multivariate multi-step Long Short-Term Memory (LSTM), Facebook Prophet with LightGBM optimized through Optuna, and Seasonal Auto-Regressive Integrated Moving Average (SARIMA)
- Score: 0.0
- License:
- Abstract: Forecasting stock market prices remains a complex challenge for traders, analysts, and engineers due to the multitude of factors that influence price movements. Recent advancements in artificial intelligence (AI) and natural language processing (NLP) have significantly enhanced stock price prediction capabilities. AI's ability to process vast and intricate data sets has led to more sophisticated forecasts. However, achieving consistently high accuracy in stock price forecasting remains elusive. In this paper, we leverage 30 years of historical data from national banks in India, sourced from the National Stock Exchange, to forecast stock prices. Our approach utilizes state-of-the-art deep learning models, including multivariate multi-step Long Short-Term Memory (LSTM), Facebook Prophet with LightGBM optimized through Optuna, and Seasonal Auto-Regressive Integrated Moving Average (SARIMA). We further integrate sentiment analysis from tweets and reliable financial sources such as Business Standard and Reuters, acknowledging their crucial influence on stock price fluctuations.
Related papers
- Natural Language Processing and Multimodal Stock Price Prediction [0.8702432681310401]
This paper utilizes stock percentage change as training data, in contrast to the traditional use of raw currency values.
The choice of percentage change aims to provide models with context regarding the significance of price fluctuations.
The study employs specialized BERT natural language processing models to predict stock price trends.
arXiv Detail & Related papers (2024-01-03T01:21:30Z) - Predicting Financial Market Trends using Time Series Analysis and
Natural Language Processing [0.0]
This study was to assess the viability of Twitter sentiments as a tool for predicting stock prices of major corporations such as Tesla, Apple.
Our findings indicate that positivity, negativity, and subjectivity are the primary determinants of fluctuations in stock prices.
arXiv Detail & Related papers (2023-08-31T21:20:58Z) - Diffusion Variational Autoencoder for Tackling Stochasticity in
Multi-Step Regression Stock Price Prediction [54.21695754082441]
Multi-step stock price prediction over a long-term horizon is crucial for forecasting its volatility.
Current solutions to multi-step stock price prediction are mostly designed for single-step, classification-based predictions.
We combine a deep hierarchical variational-autoencoder (VAE) and diffusion probabilistic techniques to do seq2seq stock prediction.
Our model is shown to outperform state-of-the-art solutions in terms of its prediction accuracy and variance.
arXiv Detail & Related papers (2023-08-18T16:21:15Z) - Joint Latent Topic Discovery and Expectation Modeling for Financial
Markets [45.758436505779386]
We present a groundbreaking framework for financial market analysis.
This approach is the first to jointly model investor expectations and automatically mine latent stock relationships.
Our model consistently achieves an annual return exceeding 10%.
arXiv Detail & Related papers (2023-06-01T01:36:51Z) - Can ChatGPT Forecast Stock Price Movements? Return Predictability and Large Language Models [51.3422222472898]
We document the capability of large language models (LLMs) like ChatGPT to predict stock price movements using news headlines.
We develop a theoretical model incorporating information capacity constraints, underreaction, limits-to-arbitrage, and LLMs.
arXiv Detail & Related papers (2023-04-15T19:22:37Z) - Quantitative Stock Investment by Routing Uncertainty-Aware Trading
Experts: A Multi-Task Learning Approach [29.706515133374193]
We show that existing deep learning methods are sensitive to random seeds and network routers.
We propose a novel two-stage mixture-of-experts (MoE) framework for quantitative investment to mimic the efficient bottom-up trading strategy design workflow of successful trading firms.
AlphaMix significantly outperforms many state-of-the-art baselines in terms of four financial criteria.
arXiv Detail & Related papers (2022-06-07T08:58:00Z) - HiSA-SMFM: Historical and Sentiment Analysis based Stock Market
Forecasting Model [3.6704226968275258]
The aim of this paper is to predict the future of the financial stocks of a company with improved accuracy.
It has been found by analyzing the existing research in the area of sentiment analysis that there is a strong correlation between the movement of stock prices and the publication of news articles.
arXiv Detail & Related papers (2022-03-10T17:03:38Z) - Bayesian Bilinear Neural Network for Predicting the Mid-price Dynamics
in Limit-Order Book Markets [84.90242084523565]
Traditional time-series econometric methods often appear incapable of capturing the true complexity of the multi-level interactions driving the price dynamics.
By adopting a state-of-the-art second-order optimization algorithm, we train a Bayesian bilinear neural network with temporal attention.
By addressing the use of predictive distributions to analyze errors and uncertainties associated with the estimated parameters and model forecasts, we thoroughly compare our Bayesian model with traditional ML alternatives.
arXiv Detail & Related papers (2022-03-07T18:59:54Z) - Stock Price Prediction Under Anomalous Circumstances [81.37657557441649]
This paper aims to capture the movement pattern of stock prices under anomalous circumstances.
We train ARIMA and LSTM models at the single-stock level, industry level, and general market level.
Based on 100 companies' stock prices in the period of 2016 to 2020, the models achieve an average prediction accuracy of 98%.
arXiv Detail & Related papers (2021-09-14T18:50:38Z) - Stock price prediction using BERT and GAN [0.0]
This paper proposes an ensemble of state-of-the-art methods for predicting stock prices.
It uses a version of BERT, which is a pre-trained transformer model by Google for Natural Language Processing (NLP)
After, a Generative Adversarial Network (GAN) predicts the stock price for Apple Inc using the technical indicators, stock indexes of various countries, some commodities, and historical prices along with the sentiment scores.
arXiv Detail & Related papers (2021-07-18T18:31:43Z) - Design and Analysis of Robust Deep Learning Models for Stock Price
Prediction [0.0]
Building predictive models for robust and accurate prediction of stock prices and stock price movement is a challenging research problem to solve.
This chapter proposes a collection of predictive regression models built on deep learning architecture for robust and precise prediction of the future prices of a stock listed in the diversified sectors in the National Stock Exchange (NSE) of India.
arXiv Detail & Related papers (2021-06-17T17:15:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.