Rethinking Deep Learning: Non-backpropagation and Non-optimization Machine Learning Approach Using Hebbian Neural Networks
- URL: http://arxiv.org/abs/2411.05861v2
- Date: Fri, 27 Dec 2024 08:39:23 GMT
- Title: Rethinking Deep Learning: Non-backpropagation and Non-optimization Machine Learning Approach Using Hebbian Neural Networks
- Authors: Kei Itoh,
- Abstract summary: I develop a machine learning method that mimics biological neural systems by implementing Hebbian learning in NNs without backpropagation and optimization method.
I create an MNIST character recognition program using vector norm magnitude as the criterion, achieving an accuracy of approximately 75%.
This demonstrates that the Hebbian learning NNs can recognize handwritten characters without objective functions, backpropagation, optimization processes, and large data set.
- Score: 0.0
- License:
- Abstract: Developing strong AI could provide a powerful tool for addressing social and scientific challenges. Neural networks (NNs), inspired by biological systems, have the potential to achieve this. However, weight optimization techniques using error backpropagation are not observed in biological systems, raising doubts about current NNs approaches. In this context, Itoh (2024) solved the MNIST classification problem without using objective functions or backpropagation. However, weight updates were not used, so it does not qualify as machine learning AI. In this study, I develop a machine learning method that mimics biological neural systems by implementing Hebbian learning in NNs without backpropagation and optimization method to solve the MNIST classification problem and analyze its output. Development proceeded in three stages. In the first stage, I applied the Hebbian learning rule to the MNIST character recognition algorithm by Itoh (2024), resulting in lower accuracy than non-Hebbian NNs, highlighting the limitations of conventional training procedures for Hebbian learning. In the second stage, I examined the properties of individually trained NNs using norm-based cognition, showing that NNs trained on a specific label respond powerfully to that label. In the third stage, I created an MNIST character recognition program using vector norm magnitude as the criterion, achieving an accuracy of approximately 75%. This demonstrates that the Hebbian learning NNs can recognize handwritten characters without objective functions, backpropagation, optimization processes, and large data set. Based on these results, developing a mechanism based on norm-based cognition as a fundamental unit and then increasing complexity to achieve indirect similarity cognition should help mimic biological neural systems and contribute to realizing strong AI.
Related papers
- Rethinking Deep Learning: Propagating Information in Neural Networks without Backpropagation and Statistical Optimization [0.0]
This study discusses the information propagation capabilities and potential practical applications of NNs as neural system mimicking structures.
In this study, the NNs architecture comprises fully connected layers using step functions as activation functions, with 0-15 hidden layers, and no weight updates.
The accuracy is calculated by comparing the average output vectors of the training data for each label with the output vectors of the test data, based on vector similarity.
arXiv Detail & Related papers (2024-08-18T09:22:24Z) - On Newton's Method to Unlearn Neural Networks [44.85793893441989]
We seek approximate unlearning algorithms for neural networks (NNs) that return identical models to the retrained oracle.
We propose CureNewton's method, a principle approach that leverages cubic regularization to handle the Hessian degeneracy effectively.
Experiments across different models and datasets show that our method can achieve competitive unlearning performance to the state-of-the-art algorithm in practical unlearning settings.
arXiv Detail & Related papers (2024-06-20T17:12:20Z) - Neuro-mimetic Task-free Unsupervised Online Learning with Continual
Self-Organizing Maps [56.827895559823126]
Self-organizing map (SOM) is a neural model often used in clustering and dimensionality reduction.
We propose a generalization of the SOM, the continual SOM, which is capable of online unsupervised learning under a low memory budget.
Our results, on benchmarks including MNIST, Kuzushiji-MNIST, and Fashion-MNIST, show almost a two times increase in accuracy.
arXiv Detail & Related papers (2024-02-19T19:11:22Z) - Towards Theoretically Inspired Neural Initialization Optimization [66.04735385415427]
We propose a differentiable quantity, named GradCosine, with theoretical insights to evaluate the initial state of a neural network.
We show that both the training and test performance of a network can be improved by maximizing GradCosine under norm constraint.
Generalized from the sample-wise analysis into the real batch setting, NIO is able to automatically look for a better initialization with negligible cost.
arXiv Detail & Related papers (2022-10-12T06:49:16Z) - Hebbian Continual Representation Learning [9.54473759331265]
Continual Learning aims to bring machine learning into a more realistic scenario.
We investigate whether biologically inspired Hebbian learning is useful for tackling continual challenges.
arXiv Detail & Related papers (2022-06-28T09:21:03Z) - Predictive Coding: Towards a Future of Deep Learning beyond
Backpropagation? [41.58529335439799]
The backpropagation of error algorithm used to train deep neural networks has been fundamental to the successes of deep learning.
Recent work has developed the idea into a general-purpose algorithm able to train neural networks using only local computations.
We show the substantially greater flexibility of predictive coding networks against equivalent deep neural networks.
arXiv Detail & Related papers (2022-02-18T22:57:03Z) - Rethinking Nearest Neighbors for Visual Classification [56.00783095670361]
k-NN is a lazy learning method that aggregates the distance between the test image and top-k neighbors in a training set.
We adopt k-NN with pre-trained visual representations produced by either supervised or self-supervised methods in two steps.
Via extensive experiments on a wide range of classification tasks, our study reveals the generality and flexibility of k-NN integration.
arXiv Detail & Related papers (2021-12-15T20:15:01Z) - Artificial Neural Variability for Deep Learning: On Overfitting, Noise
Memorization, and Catastrophic Forgetting [135.0863818867184]
artificial neural variability (ANV) helps artificial neural networks learn some advantages from natural'' neural networks.
ANV plays as an implicit regularizer of the mutual information between the training data and the learned model.
It can effectively relieve overfitting, label noise memorization, and catastrophic forgetting at negligible costs.
arXiv Detail & Related papers (2020-11-12T06:06:33Z) - The training accuracy of two-layer neural networks: its estimation and
understanding using random datasets [0.0]
We propose a novel theory based on space partitioning to estimate the approximate training accuracy for two-layer neural networks on random datasets without training.
Our method estimates the training accuracy for two-layer fully-connected neural networks on two-class random datasets using only three arguments.
arXiv Detail & Related papers (2020-10-26T07:21:29Z) - Rectified Linear Postsynaptic Potential Function for Backpropagation in
Deep Spiking Neural Networks [55.0627904986664]
Spiking Neural Networks (SNNs) usetemporal spike patterns to represent and transmit information, which is not only biologically realistic but also suitable for ultra-low-power event-driven neuromorphic implementation.
This paper investigates the contribution of spike timing dynamics to information encoding, synaptic plasticity and decision making, providing a new perspective to design of future DeepSNNs and neuromorphic hardware systems.
arXiv Detail & Related papers (2020-03-26T11:13:07Z) - Robust Pruning at Initialization [61.30574156442608]
A growing need for smaller, energy-efficient, neural networks to be able to use machine learning applications on devices with limited computational resources.
For Deep NNs, such procedures remain unsatisfactory as the resulting pruned networks can be difficult to train and, for instance, they do not prevent one layer from being fully pruned.
arXiv Detail & Related papers (2020-02-19T17:09:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.