Emotional Images: Assessing Emotions in Images and Potential Biases in Generative Models
- URL: http://arxiv.org/abs/2411.05985v1
- Date: Fri, 08 Nov 2024 21:42:50 GMT
- Title: Emotional Images: Assessing Emotions in Images and Potential Biases in Generative Models
- Authors: Maneet Mehta, Cody Buntain,
- Abstract summary: This paper examines potential biases and inconsistencies in emotional evocation of images produced by generative artificial intelligence (AI) models.
We compare the emotions evoked by an AI-produced image to the emotions evoked by prompts used to create those images.
Findings indicate that AI-generated images frequently lean toward negative emotional content, regardless of the original prompt.
- Score: 0.0
- License:
- Abstract: This paper examines potential biases and inconsistencies in emotional evocation of images produced by generative artificial intelligence (AI) models and their potential bias toward negative emotions. In particular, we assess this bias by comparing the emotions evoked by an AI-produced image to the emotions evoked by prompts used to create those images. As a first step, the study evaluates three approaches for identifying emotions in images -- traditional supervised learning, zero-shot learning with vision-language models, and cross-modal auto-captioning -- using EmoSet, a large dataset of image-emotion annotations that categorizes images across eight emotional types. Results show fine-tuned models, particularly Google's Vision Transformer (ViT), significantly outperform zero-shot and caption-based methods in recognizing emotions in images. For a cross-modality comparison, we then analyze the differences between emotions in text prompts -- via existing text-based emotion-recognition models -- and the emotions evoked in the resulting images. Findings indicate that AI-generated images frequently lean toward negative emotional content, regardless of the original prompt. This emotional skew in generative models could amplify negative affective content in digital spaces, perpetuating its prevalence and impact. The study advocates for a multidisciplinary approach to better align AI emotion recognition with psychological insights and address potential biases in generative AI outputs across digital media.
Related papers
- Level of agreement between emotions generated by Artificial Intelligence and human evaluation: a methodological proposal [0.0]
The level of agreement between the generative images and human emotional responses has not yet been evaluated.
The study confirms the subjectivity inherent in emotional evaluation.
arXiv Detail & Related papers (2024-10-10T19:44:32Z) - Make Me Happier: Evoking Emotions Through Image Diffusion Models [36.40067582639123]
We present a novel challenge of emotion-evoked image generation, aiming to synthesize images that evoke target emotions while retaining the semantics and structures of the original scenes.
Due to the lack of emotion editing datasets, we provide a unique dataset consisting of 340,000 pairs of images and their emotion annotations.
arXiv Detail & Related papers (2024-03-13T05:13:17Z) - The Good, The Bad, and Why: Unveiling Emotions in Generative AI [73.94035652867618]
We show that EmotionPrompt can boost the performance of AI models while EmotionAttack can hinder it.
EmotionDecode reveals that AI models can comprehend emotional stimuli akin to the mechanism of dopamine in the human brain.
arXiv Detail & Related papers (2023-12-18T11:19:45Z) - High-Level Context Representation for Emotion Recognition in Images [4.987022981158291]
We propose an approach for high-level context representation extraction from images.
The model relies on a single cue and a single encoding stream to correlate this representation with emotions.
Our approach is more efficient than previous models and can be easily deployed to address real-world problems related to emotion recognition.
arXiv Detail & Related papers (2023-05-05T13:20:41Z) - SOLVER: Scene-Object Interrelated Visual Emotion Reasoning Network [83.27291945217424]
We propose a novel Scene-Object interreLated Visual Emotion Reasoning network (SOLVER) to predict emotions from images.
To mine the emotional relationships between distinct objects, we first build up an Emotion Graph based on semantic concepts and visual features.
We also design a Scene-Object Fusion Module to integrate scenes and objects, which exploits scene features to guide the fusion process of object features with the proposed scene-based attention mechanism.
arXiv Detail & Related papers (2021-10-24T02:41:41Z) - Using Knowledge-Embedded Attention to Augment Pre-trained Language
Models for Fine-Grained Emotion Recognition [0.0]
We focus on improving fine-grained emotion recognition by introducing external knowledge into a pre-trained self-attention model.
Our results and error analyses outperform previous models on several datasets.
arXiv Detail & Related papers (2021-07-31T09:41:44Z) - Affective Image Content Analysis: Two Decades Review and New
Perspectives [132.889649256384]
We will comprehensively review the development of affective image content analysis (AICA) in the recent two decades.
We will focus on the state-of-the-art methods with respect to three main challenges -- the affective gap, perception subjectivity, and label noise and absence.
We discuss some challenges and promising research directions in the future, such as image content and context understanding, group emotion clustering, and viewer-image interaction.
arXiv Detail & Related papers (2021-06-30T15:20:56Z) - A Circular-Structured Representation for Visual Emotion Distribution
Learning [82.89776298753661]
We propose a well-grounded circular-structured representation to utilize the prior knowledge for visual emotion distribution learning.
To be specific, we first construct an Emotion Circle to unify any emotional state within it.
On the proposed Emotion Circle, each emotion distribution is represented with an emotion vector, which is defined with three attributes.
arXiv Detail & Related papers (2021-06-23T14:53:27Z) - Enhancing Cognitive Models of Emotions with Representation Learning [58.2386408470585]
We present a novel deep learning-based framework to generate embedding representations of fine-grained emotions.
Our framework integrates a contextualized embedding encoder with a multi-head probing model.
Our model is evaluated on the Empathetic Dialogue dataset and shows the state-of-the-art result for classifying 32 emotions.
arXiv Detail & Related papers (2021-04-20T16:55:15Z) - Facial Expression Editing with Continuous Emotion Labels [76.36392210528105]
Deep generative models have achieved impressive results in the field of automated facial expression editing.
We propose a model that can be used to manipulate facial expressions in facial images according to continuous two-dimensional emotion labels.
arXiv Detail & Related papers (2020-06-22T13:03:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.