Parallel Multi-path Feed Forward Neural Networks (PMFFNN) for Long Columnar Datasets: A Novel Approach to Complexity Reduction
- URL: http://arxiv.org/abs/2411.06020v1
- Date: Sat, 09 Nov 2024 00:48:32 GMT
- Title: Parallel Multi-path Feed Forward Neural Networks (PMFFNN) for Long Columnar Datasets: A Novel Approach to Complexity Reduction
- Authors: Ayoub Jadouli, Chaker El Amrani,
- Abstract summary: We introduce a novel architecture called Parallel Multi-path Feed Forward Neural Networks (PMFFNN)
By doing so, the architecture ensures that each subset of features receives focused attention, which is often neglected in traditional models.
PMFFNN outperforms traditional FFNNs and 1D CNNs, providing an optimized solution for managing large-scale data.
- Score: 0.0
- License:
- Abstract: Traditional Feed-Forward Neural Networks (FFNN) and one-dimensional Convolutional Neural Networks (1D CNN) often encounter difficulties when dealing with long, columnar datasets that contain numerous features. The challenge arises from two primary factors: the large volume of data and the potential absence of meaningful relationships between features. In conventional training, large datasets can overwhelm the model, causing significant portions of the input to remain underutilized. As a result, the model may fail to capture the critical information necessary for effective learning, which leads to diminished performance. To overcome these limitations, we introduce a novel architecture called Parallel Multi-path Feed Forward Neural Networks (PMFFNN). Our approach leverages multiple parallel pathways to process distinct subsets of columns from the input dataset. By doing so, the architecture ensures that each subset of features receives focused attention, which is often neglected in traditional models. This approach maximizes the utilization of feature diversity, ensuring that no critical data sections are overlooked during training. Our architecture offers two key advantages. First, it allows for more effective handling of long, columnar data by distributing the learning task across parallel paths. Second, it reduces the complexity of the model by narrowing the feature scope in each path, which leads to faster training times and improved resource efficiency. The empirical results indicate that PMFFNN outperforms traditional FFNNs and 1D CNNs, providing an optimized solution for managing large-scale data.
Related papers
- LR-CNN: Lightweight Row-centric Convolutional Neural Network Training
for Memory Reduction [21.388549904063538]
Convolutional Neural Network with a multi-layer architecture has advanced rapidly.
Current efforts mitigate such bottleneck by external auxiliary solutions with additional hardware costs, and internal modifications with potential accuracy penalty.
We break the traditional layer-by-layer (column) dataflow rule. Now operations are novelly re-organized into rows throughout all convolution layers.
This lightweight design allows a majority of intermediate data to be removed without any loss of accuracy.
arXiv Detail & Related papers (2024-01-21T12:19:13Z) - Predicting Infant Brain Connectivity with Federated Multi-Trajectory
GNNs using Scarce Data [54.55126643084341]
Existing deep learning solutions suffer from three major limitations.
We introduce FedGmTE-Net++, a federated graph-based multi-trajectory evolution network.
Using the power of federation, we aggregate local learnings among diverse hospitals with limited datasets.
arXiv Detail & Related papers (2024-01-01T10:20:01Z) - FFEINR: Flow Feature-Enhanced Implicit Neural Representation for
Spatio-temporal Super-Resolution [4.577685231084759]
This paper proposes a Feature-Enhanced Neural Implicit Representation (FFEINR) for super-resolution of flow field data.
It can take full advantage of the implicit neural representation in terms of model structure and sampling resolution.
The training process of FFEINR is facilitated by introducing feature enhancements for the input layer.
arXiv Detail & Related papers (2023-08-24T02:28:18Z) - Hybridization of Capsule and LSTM Networks for unsupervised anomaly
detection on multivariate data [0.0]
This paper introduces a novel NN architecture which hybridises the Long-Short-Term-Memory (LSTM) and Capsule Networks into a single network.
The proposed method uses an unsupervised learning technique to overcome the issues with finding large volumes of labelled training data.
arXiv Detail & Related papers (2022-02-11T10:33:53Z) - Routing with Self-Attention for Multimodal Capsule Networks [108.85007719132618]
We present a new multimodal capsule network that allows us to leverage the strength of capsules in the context of a multimodal learning framework.
To adapt the capsules to large-scale input data, we propose a novel routing by self-attention mechanism that selects relevant capsules.
This allows not only for robust training with noisy video data, but also to scale up the size of the capsule network compared to traditional routing methods.
arXiv Detail & Related papers (2021-12-01T19:01:26Z) - Single-stream CNN with Learnable Architecture for Multi-source Remote
Sensing Data [16.810239678639288]
We propose an efficient framework based on deep convolutional neural network (CNN) for multi-source remote sensing data joint classification.
The proposed method can theoretically adjust any modern CNN models to any multi-source remote sensing data set.
Experimental results demonstrate the effectiveness of the proposed single-stream CNNs.
arXiv Detail & Related papers (2021-09-13T16:10:41Z) - Rank-R FNN: A Tensor-Based Learning Model for High-Order Data
Classification [69.26747803963907]
Rank-R Feedforward Neural Network (FNN) is a tensor-based nonlinear learning model that imposes Canonical/Polyadic decomposition on its parameters.
First, it handles inputs as multilinear arrays, bypassing the need for vectorization, and can thus fully exploit the structural information along every data dimension.
We establish the universal approximation and learnability properties of Rank-R FNN, and we validate its performance on real-world hyperspectral datasets.
arXiv Detail & Related papers (2021-04-11T16:37:32Z) - Deep Cellular Recurrent Network for Efficient Analysis of Time-Series
Data with Spatial Information [52.635997570873194]
This work proposes a novel deep cellular recurrent neural network (DCRNN) architecture to process complex multi-dimensional time series data with spatial information.
The proposed architecture achieves state-of-the-art performance while utilizing substantially less trainable parameters when compared to comparable methods in the literature.
arXiv Detail & Related papers (2021-01-12T20:08:18Z) - Spatio-Temporal Inception Graph Convolutional Networks for
Skeleton-Based Action Recognition [126.51241919472356]
We design a simple and highly modularized graph convolutional network architecture for skeleton-based action recognition.
Our network is constructed by repeating a building block that aggregates multi-granularity information from both the spatial and temporal paths.
arXiv Detail & Related papers (2020-11-26T14:43:04Z) - Connecting the Dots: Multivariate Time Series Forecasting with Graph
Neural Networks [91.65637773358347]
We propose a general graph neural network framework designed specifically for multivariate time series data.
Our approach automatically extracts the uni-directed relations among variables through a graph learning module.
Our proposed model outperforms the state-of-the-art baseline methods on 3 of 4 benchmark datasets.
arXiv Detail & Related papers (2020-05-24T04:02:18Z) - Depth Enables Long-Term Memory for Recurrent Neural Networks [0.0]
We introduce a measure of the network's ability to support information flow across time, referred to as the Start-End separation rank.
We prove that deep recurrent networks support Start-End separation ranks which are higher than those supported by their shallow counterparts.
arXiv Detail & Related papers (2020-03-23T10:29:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.