Learning Mixtures of Experts with EM
- URL: http://arxiv.org/abs/2411.06056v1
- Date: Sat, 09 Nov 2024 03:44:09 GMT
- Title: Learning Mixtures of Experts with EM
- Authors: Quentin Fruytier, Aryan Mokhtari, Sujay Sanghavi,
- Abstract summary: Mixtures of Experts (MoE) are Machine Learning models that involve the input space, with a separate "expert" model trained on each partition.
We study the efficiency of the Expectation Maximization (EM) algorithm for the training of MoE models.
- Score: 28.48469221248906
- License:
- Abstract: Mixtures of Experts (MoE) are Machine Learning models that involve partitioning the input space, with a separate "expert" model trained on each partition. Recently, MoE have become popular as components in today's large language models as a means to reduce training and inference costs. There, the partitioning function and the experts are both learnt jointly via gradient descent on the log-likelihood. In this paper we focus on studying the efficiency of the Expectation Maximization (EM) algorithm for the training of MoE models. We first rigorously analyze EM for the cases of linear or logistic experts, where we show that EM is equivalent to Mirror Descent with unit step size and a Kullback-Leibler Divergence regularizer. This perspective allows us to derive new convergence results and identify conditions for local linear convergence based on the signal-to-noise ratio (SNR). Experiments on synthetic and (small-scale) real-world data show that EM outperforms the gradient descent algorithm both in terms of convergence rate and the achieved accuracy.
Related papers
- Network EM Algorithm for Gaussian Mixture Model in Decentralized Federated Learning [1.4549461207028445]
We study various network Expectation-Maximization (EM) algorithms for the Gaussian mixture model.
We introduce a momentum network EM (MNEM) algorithm, which uses a momentum parameter to combine information from both the current and historical estimators.
We also develop a semi-supervised MNEM algorithm, which leverages partially labeled data.
arXiv Detail & Related papers (2024-11-08T14:25:46Z) - SEER-MoE: Sparse Expert Efficiency through Regularization for Mixture-of-Experts [49.01990048827639]
We introduce SEER-MoE, a framework for reducing both the memory footprint and compute requirements of pre-trained MoE models.
The first stage involves pruning the total number of experts using a heavy-hitters counting guidance, while the second stage employs a regularization-based fine-tuning strategy to recover accuracy loss.
Our empirical studies demonstrate the effectiveness of our method, resulting in a sparse MoEs model optimized for inference efficiency with minimal accuracy trade-offs.
arXiv Detail & Related papers (2024-04-07T22:13:43Z) - On Least Square Estimation in Softmax Gating Mixture of Experts [78.3687645289918]
We investigate the performance of the least squares estimators (LSE) under a deterministic MoE model.
We establish a condition called strong identifiability to characterize the convergence behavior of various types of expert functions.
Our findings have important practical implications for expert selection.
arXiv Detail & Related papers (2024-02-05T12:31:18Z) - Online Variational Sequential Monte Carlo [49.97673761305336]
We build upon the variational sequential Monte Carlo (VSMC) method, which provides computationally efficient and accurate model parameter estimation and Bayesian latent-state inference.
Online VSMC is capable of performing efficiently, entirely on-the-fly, both parameter estimation and particle proposal adaptation.
arXiv Detail & Related papers (2023-12-19T21:45:38Z) - Efficient Training of Energy-Based Models Using Jarzynski Equality [13.636994997309307]
Energy-based models (EBMs) are generative models inspired by statistical physics.
The computation of its gradient with respect to the model parameters requires sampling the model distribution.
Here we show how results for nonequilibrium thermodynamics based on Jarzynski equality can be used to perform this computation efficiently.
arXiv Detail & Related papers (2023-05-30T21:07:52Z) - Improvements to Supervised EM Learning of Shared Kernel Models by
Feature Space Partitioning [0.0]
This paper addresses the lack of rigour in the derivation of the EM training algorithm and the computational complexity of the technique.
We first present a detailed derivation of EM for the Gaussian shared kernel model PRBF classifier.
To reduce complexity of the resulting SKEM algorithm, we partition the feature space into $R$ non-overlapping subsets of variables.
arXiv Detail & Related papers (2022-05-31T09:18:58Z) - Sparse MoEs meet Efficient Ensembles [49.313497379189315]
We study the interplay of two popular classes of such models: ensembles of neural networks and sparse mixture of experts (sparse MoEs)
We present Efficient Ensemble of Experts (E$3$), a scalable and simple ensemble of sparse MoEs that takes the best of both classes of models, while using up to 45% fewer FLOPs than a deep ensemble.
arXiv Detail & Related papers (2021-10-07T11:58:35Z) - Counterfactual Maximum Likelihood Estimation for Training Deep Networks [83.44219640437657]
Deep learning models are prone to learning spurious correlations that should not be learned as predictive clues.
We propose a causality-based training framework to reduce the spurious correlations caused by observable confounders.
We conduct experiments on two real-world tasks: Natural Language Inference (NLI) and Image Captioning.
arXiv Detail & Related papers (2021-06-07T17:47:16Z) - Training Deep Energy-Based Models with f-Divergence Minimization [113.97274898282343]
Deep energy-based models (EBMs) are very flexible in distribution parametrization but computationally challenging.
We propose a general variational framework termed f-EBM to train EBMs using any desired f-divergence.
Experimental results demonstrate the superiority of f-EBM over contrastive divergence, as well as the benefits of training EBMs using f-divergences other than KL.
arXiv Detail & Related papers (2020-03-06T23:11:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.