IOPO: Empowering LLMs with Complex Instruction Following via Input-Output Preference Optimization
- URL: http://arxiv.org/abs/2411.06208v1
- Date: Sat, 09 Nov 2024 15:12:43 GMT
- Title: IOPO: Empowering LLMs with Complex Instruction Following via Input-Output Preference Optimization
- Authors: Xinghua Zhang, Haiyang Yu, Cheng Fu, Fei Huang, Yongbin Li,
- Abstract summary: This paper introduces TRACE, a benchmark for improving and evaluating the complex instructionfollowing ability.
We also propose IOPO, which takes both input and output preference pairs into consideration.
Experiments on both in-domain and out-of-domain datasets confirm the effectiveness of IOPO.
- Score: 74.34707794886751
- License:
- Abstract: In the realm of large language models (LLMs), the ability of models to accurately follow instructions is paramount as more agents and applications leverage LLMs for construction, where the complexity of instructions are rapidly increasing. However, on the one hand, there is only a certain amount of complex instruction evaluation data; on the other hand, there are no dedicated algorithms to improve the ability to follow complex instructions. To this end, this paper introduces TRACE, a benchmark for improving and evaluating the complex instructionfollowing ability, which consists of 120K training data and 1K evaluation data. Furthermore, we propose IOPO (Input-Output Preference Optimization) alignment method which takes both input and output preference pairs into consideration, where LLMs not only rapidly align with response preferences but also meticulously explore the instruction preferences. Extensive experiments on both in-domain and outof-domain datasets confirm the effectiveness of IOPO, showing 8.15%, 2.18% improvements on in-domain data and 6.29%, 3.13% on outof-domain data compared to SFT and DPO respectively.
Related papers
- Self-Supervised Prompt Optimization [16.06653117043314]
Well-designed prompts are crucial for enhancing Large language models' (LLMs) reasoning capabilities.
Existing prompt optimization methods rely heavily on external references such as ground truth or by humans.
We propose Self-Supervised Prompt Optimization (SPO), a cost-efficient framework that discovers effective prompts for both closed and open-ended tasks.
arXiv Detail & Related papers (2025-02-07T17:45:16Z) - Aligning Instruction Tuning with Pre-training [81.4748965653345]
We propose Aligning Instruction Tuning with Pre-training (AITP) to align instruction tuning with pre-training distributions.
We show consistent performance improvements with AITP on three fully open large language models (LLMs) across eight benchmarks.
arXiv Detail & Related papers (2025-01-16T08:27:40Z) - A Systematic Examination of Preference Learning through the Lens of Instruction-Following [83.71180850955679]
We use a novel synthetic data generation pipeline to generate 48,000 instruction unique-following prompts.
With our synthetic prompts, we use two preference dataset curation methods - rejection sampling (RS) and Monte Carlo Tree Search (MCTS)
Experiments reveal that shared prefixes in preference pairs, as generated by MCTS, provide marginal but consistent improvements.
High-contrast preference pairs generally outperform low-contrast pairs; however, combining both often yields the best performance.
arXiv Detail & Related papers (2024-12-18T15:38:39Z) - Enhancing and Assessing Instruction-Following with Fine-Grained Instruction Variants [28.691691883519542]
We introduce a technique that decomposes complex instructions into simpler sub-components, modifies these, and reconstructs them into new variants.
Based on DeMoRecon, we developed the FGIV dataset which contains fine-grained instruction variants of 1,773 seed instructions.
Our findings show that LLMs fine-tuned with FGIV will gain significant performance boost on both ours and commonly used instructions-following benchmarks.
arXiv Detail & Related papers (2024-06-17T08:08:11Z) - Relative Preference Optimization: Enhancing LLM Alignment through Contrasting Responses across Identical and Diverse Prompts [95.09994361995389]
Relative Preference Optimization (RPO) is designed to discern between more and less preferred responses derived from both identical and related prompts.
RPO has demonstrated a superior ability to align large language models with user preferences and to improve their adaptability during the training process.
arXiv Detail & Related papers (2024-02-12T22:47:57Z) - RA-DIT: Retrieval-Augmented Dual Instruction Tuning [90.98423540361946]
Retrieval-augmented language models (RALMs) improve performance by accessing long-tail and up-to-date knowledge from external data stores.
Existing approaches require either expensive retrieval-specific modifications to LM pre-training or use post-hoc integration of the data store that leads to suboptimal performance.
We introduce Retrieval-Augmented Dual Instruction Tuning (RA-DIT), a lightweight fine-tuning methodology that provides a third option.
arXiv Detail & Related papers (2023-10-02T17:16:26Z) - Prompt-Tuning Decision Transformer with Preference Ranking [83.76329715043205]
We propose the Prompt-Tuning DT algorithm to address challenges by using trajectory segments as prompts to guide RL agents in acquiring environmental information.
Our approach involves randomly sampling a Gaussian distribution to fine-tune the elements of the prompt trajectory and using preference ranking function to find the optimization direction.
Our work contributes to the advancement of prompt-tuning approaches in RL, providing a promising direction for optimizing large RL agents for specific preference tasks.
arXiv Detail & Related papers (2023-05-16T17:49:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.