Exploring Out-of-distribution Detection for Sparse-view Computed Tomography with Diffusion Models
- URL: http://arxiv.org/abs/2411.06308v1
- Date: Sat, 09 Nov 2024 23:17:42 GMT
- Title: Exploring Out-of-distribution Detection for Sparse-view Computed Tomography with Diffusion Models
- Authors: Ezgi Demircan-Tureyen, Felix Lucka, Tristan van Leeuwen,
- Abstract summary: We study the use of a diffusion model, trained to capture the target distribution for CT reconstruction as an in-distribution prior.
We employ the model to reconstruct partially diffused input images and assess OOD-ness through multiple reconstruction errors.
Our findings suggest that effective OOD detection can be achieved by comparing measurements with forward-projected reconstructions.
- Score: 1.6704428692159
- License:
- Abstract: Recent works demonstrate the effectiveness of diffusion models as unsupervised solvers for inverse imaging problems. Sparse-view computed tomography (CT) has greatly benefited from these advancements, achieving improved generalization without reliance on measurement parameters. However, this comes at the cost of potential hallucinations, especially when handling out-of-distribution (OOD) data. To ensure reliability, it is essential to study OOD detection for CT reconstruction across both clinical and industrial applications. This need further extends to enabling the OOD detector to function effectively as an anomaly inspection tool. In this paper, we explore the use of a diffusion model, trained to capture the target distribution for CT reconstruction, as an in-distribution prior. Building on recent research, we employ the model to reconstruct partially diffused input images and assess OOD-ness through multiple reconstruction errors. Adapting this approach for sparse-view CT requires redefining the notions of "input" and "reconstruction error". Here, we use filtered backprojection (FBP) reconstructions as input and investigate various definitions of reconstruction error. Our proof-of-concept experiments on the MNIST dataset highlight both successes and failures, demonstrating the potential and limitations of integrating such an OOD detector into a CT reconstruction system. Our findings suggest that effective OOD detection can be achieved by comparing measurements with forward-projected reconstructions, provided that reconstructions from noisy FBP inputs are conditioned on the measurements. However, conditioning can sometimes lead the OOD detector to inadvertently reconstruct OOD images well. To counter this, we introduce a weighting approach that improves robustness against highly informative OOD measurements, albeit with a trade-off in performance in certain cases.
Related papers
- Unsupervised Hybrid framework for ANomaly Detection (HAND) -- applied to Screening Mammogram [5.387300498478745]
Out-of-distribution (OOD) detection is crucial for enhancing the generalization of AI models used in mammogram screening.
We developed a novel backbone - HAND - for detecting OOD from large-scale digital screening mammogram studies.
Hand pipeline offers an automated efficient computational solution for domain-specific quality checks in external screening mammograms.
arXiv Detail & Related papers (2024-09-17T20:12:50Z) - Can OOD Object Detectors Learn from Foundation Models? [56.03404530594071]
Out-of-distribution (OOD) object detection is a challenging task due to the absence of open-set OOD data.
Inspired by recent advancements in text-to-image generative models, we study the potential of generative models trained on large-scale open-set data to synthesize OOD samples.
We introduce SyncOOD, a simple data curation method that capitalizes on the capabilities of large foundation models.
arXiv Detail & Related papers (2024-09-08T17:28:22Z) - Exploiting Diffusion Prior for Out-of-Distribution Detection [11.11093497717038]
Out-of-distribution (OOD) detection is crucial for deploying robust machine learning models.
We present a novel approach for OOD detection that leverages the generative ability of diffusion models and the powerful feature extraction capabilities of CLIP.
arXiv Detail & Related papers (2024-06-16T23:55:25Z) - Optimizing OOD Detection in Molecular Graphs: A Novel Approach with Diffusion Models [71.39421638547164]
We propose to detect OOD molecules by adopting an auxiliary diffusion model-based framework, which compares similarities between input molecules and reconstructed graphs.
Due to the generative bias towards reconstructing ID training samples, the similarity scores of OOD molecules will be much lower to facilitate detection.
Our research pioneers an approach of Prototypical Graph Reconstruction for Molecular OOD Detection, dubbed as PGR-MOOD and hinges on three innovations.
arXiv Detail & Related papers (2024-04-24T03:25:53Z) - Analysis of Deep Image Prior and Exploiting Self-Guidance for Image
Reconstruction [13.277067849874756]
We study how DIP recovers information from undersampled imaging measurements.
We introduce a self-driven reconstruction process that concurrently optimize both the network weights and the input.
Our method incorporates a novel denoiser regularization term which enables robust and stable joint estimation of both the network input and reconstructed image.
arXiv Detail & Related papers (2024-02-06T15:52:23Z) - DiAD: A Diffusion-based Framework for Multi-class Anomaly Detection [55.48770333927732]
We propose a Difusion-based Anomaly Detection (DiAD) framework for multi-class anomaly detection.
It consists of a pixel-space autoencoder, a latent-space Semantic-Guided (SG) network with a connection to the stable diffusion's denoising network, and a feature-space pre-trained feature extractor.
Experiments on MVTec-AD and VisA datasets demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2023-12-11T18:38:28Z) - SR-OOD: Out-of-Distribution Detection via Sample Repairing [48.272537939227206]
Out-of-distribution (OOD) detection is a crucial task for ensuring the reliability and robustness of machine learning models.
Recent works have shown that generative models often assign high confidence scores to OOD samples, indicating that they fail to capture the semantic information of the data.
We take advantage of sample repairing and propose a novel OOD detection framework, namely SR-OOD.
Our framework achieves superior performance over the state-of-the-art generative methods in OOD detection.
arXiv Detail & Related papers (2023-05-26T16:35:20Z) - Rethinking Out-of-distribution (OOD) Detection: Masked Image Modeling is
All You Need [52.88953913542445]
We find surprisingly that simply using reconstruction-based methods could boost the performance of OOD detection significantly.
We take Masked Image Modeling as a pretext task for our OOD detection framework (MOOD)
arXiv Detail & Related papers (2023-02-06T08:24:41Z) - Out-of-Distribution Detection with Reconstruction Error and
Typicality-based Penalty [3.7277730514654555]
We propose a new reconstruction error-based approach that employs normalizing flow (NF)
Because the PRE detects test inputs that lie off the in-distribution manifold, it effectively detects adversarial examples as well as OOD examples.
We show the effectiveness of our method through the evaluation using natural image datasets, CIFAR-10, TinyImageNet, and ILSVRC2012.
arXiv Detail & Related papers (2022-12-24T03:10:28Z) - Unsupervised Lesion Detection via Image Restoration with a Normative
Prior [6.495883501989547]
We propose a probabilistic model that uses a network-based prior as the normative distribution and detect lesions pixel-wise using MAP estimation.
Experiments with gliomas and stroke lesions in brain MRI show that the proposed approach outperforms the state-of-the-art unsupervised methods by a substantial margin.
arXiv Detail & Related papers (2020-04-30T18:03:18Z) - Robust Out-of-distribution Detection for Neural Networks [51.19164318924997]
We show that existing detection mechanisms can be extremely brittle when evaluating on in-distribution and OOD inputs.
We propose an effective algorithm called ALOE, which performs robust training by exposing the model to both adversarially crafted inlier and outlier examples.
arXiv Detail & Related papers (2020-03-21T17:46:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.