Amortized Bayesian Local Interpolation NetworK: Fast covariance parameter estimation for Gaussian Processes
- URL: http://arxiv.org/abs/2411.06324v1
- Date: Sun, 10 Nov 2024 01:26:16 GMT
- Title: Amortized Bayesian Local Interpolation NetworK: Fast covariance parameter estimation for Gaussian Processes
- Authors: Brandon R. Feng, Reetam Majumder, Brian J. Reich, Mohamed A. Abba,
- Abstract summary: We propose an Amortized Bayesian Local Interpolation NetworK for fast covariance parameter estimation.
The fast prediction time of these networks allows us to bypass the matrix inversion step, creating large computational speedups.
We show significant increases in computational efficiency over comparable scalable GP methodology.
- Score: 0.04660328753262073
- License:
- Abstract: Gaussian processes (GPs) are a ubiquitous tool for geostatistical modeling with high levels of flexibility and interpretability, and the ability to make predictions at unseen spatial locations through a process called Kriging. Estimation of Kriging weights relies on the inversion of the process' covariance matrix, creating a computational bottleneck for large spatial datasets. In this paper, we propose an Amortized Bayesian Local Interpolation NetworK (A-BLINK) for fast covariance parameter estimation, which uses two pre-trained deep neural networks to learn a mapping from spatial location coordinates and covariance function parameters to Kriging weights and the spatial variance, respectively. The fast prediction time of these networks allows us to bypass the matrix inversion step, creating large computational speedups over competing methods in both frequentist and Bayesian settings, and also provides full posterior inference and predictions using Markov chain Monte Carlo sampling methods. We show significant increases in computational efficiency over comparable scalable GP methodology in an extensive simulation study with lower parameter estimation error. The efficacy of our approach is also demonstrated using a temperature dataset of US climate normals for 1991--2020 based on over 7,000 weather stations.
Related papers
- Distributed Markov Chain Monte Carlo Sampling based on the Alternating
Direction Method of Multipliers [143.6249073384419]
In this paper, we propose a distributed sampling scheme based on the alternating direction method of multipliers.
We provide both theoretical guarantees of our algorithm's convergence and experimental evidence of its superiority to the state-of-the-art.
In simulation, we deploy our algorithm on linear and logistic regression tasks and illustrate its fast convergence compared to existing gradient-based methods.
arXiv Detail & Related papers (2024-01-29T02:08:40Z) - Bivariate DeepKriging for Large-scale Spatial Interpolation of Wind Fields [2.586710925821896]
High spatial resolution wind data are essential for a wide range of applications in climate, oceanographic and meteorological studies.
Large-scale spatial computation or downscaling of bivariate wind fields having velocity in two dimensions is a challenging task.
In this paper, we propose a method, called bivariate DeepKriging, which is a spatially dependent deep neural network (DNN) with an embedding layer constructed by spatial radial basis functions.
We demonstrate the computational efficiency and scalability of the proposed DNN model, with computations that are, on average, 20 times faster than those of conventional techniques.
arXiv Detail & Related papers (2023-07-16T13:34:44Z) - Efficient Large-scale Nonstationary Spatial Covariance Function
Estimation Using Convolutional Neural Networks [3.5455896230714194]
We use ConvNets to derive subregions from the nonstationary data.
We employ a selection mechanism to identify subregions that exhibit similar behavior to stationary fields.
We assess the performance of the proposed method with synthetic and real datasets at a large scale.
arXiv Detail & Related papers (2023-06-20T12:17:46Z) - Spatio-temporal DeepKriging for Interpolation and Probabilistic
Forecasting [2.494500339152185]
We propose a deep neural network (DNN) based two-stage model fortemporal-temporal and forecasting.
We adopt the quant-based loss function in the processes to provide probabilistic forecasting.
It is suitable for large-scale prediction of complex-temporal processes.
arXiv Detail & Related papers (2023-06-20T11:51:44Z) - Gaussian process regression and conditional Karhunen-Lo\'{e}ve models
for data assimilation in inverse problems [68.8204255655161]
We present a model inversion algorithm, CKLEMAP, for data assimilation and parameter estimation in partial differential equation models.
The CKLEMAP method provides better scalability compared to the standard MAP method.
arXiv Detail & Related papers (2023-01-26T18:14:12Z) - Optimization of Annealed Importance Sampling Hyperparameters [77.34726150561087]
Annealed Importance Sampling (AIS) is a popular algorithm used to estimates the intractable marginal likelihood of deep generative models.
We present a parameteric AIS process with flexible intermediary distributions and optimize the bridging distributions to use fewer number of steps for sampling.
We assess the performance of our optimized AIS for marginal likelihood estimation of deep generative models and compare it to other estimators.
arXiv Detail & Related papers (2022-09-27T07:58:25Z) - Efficient CDF Approximations for Normalizing Flows [64.60846767084877]
We build upon the diffeomorphic properties of normalizing flows to estimate the cumulative distribution function (CDF) over a closed region.
Our experiments on popular flow architectures and UCI datasets show a marked improvement in sample efficiency as compared to traditional estimators.
arXiv Detail & Related papers (2022-02-23T06:11:49Z) - Sparse Algorithms for Markovian Gaussian Processes [18.999495374836584]
Sparse Markovian processes combine the use of inducing variables with efficient Kalman filter-likes recursion.
We derive a general site-based approach to approximate the non-Gaussian likelihood with local Gaussian terms, called sites.
Our approach results in a suite of novel sparse extensions to algorithms from both the machine learning and signal processing, including variational inference, expectation propagation, and the classical nonlinear Kalman smoothers.
The derived methods are suited to literature-temporal data, where the model has separate inducing points in both time and space.
arXiv Detail & Related papers (2021-03-19T09:50:53Z) - Real-Time Regression with Dividing Local Gaussian Processes [62.01822866877782]
Local Gaussian processes are a novel, computationally efficient modeling approach based on Gaussian process regression.
Due to an iterative, data-driven division of the input space, they achieve a sublinear computational complexity in the total number of training points in practice.
A numerical evaluation on real-world data sets shows their advantages over other state-of-the-art methods in terms of accuracy as well as prediction and update speed.
arXiv Detail & Related papers (2020-06-16T18:43:31Z) - Spatially Adaptive Inference with Stochastic Feature Sampling and
Interpolation [72.40827239394565]
We propose to compute features only at sparsely sampled locations.
We then densely reconstruct the feature map with an efficient procedure.
The presented network is experimentally shown to save substantial computation while maintaining accuracy over a variety of computer vision tasks.
arXiv Detail & Related papers (2020-03-19T15:36:31Z) - Estimating Basis Functions in Massive Fields under the Spatial Mixed
Effects Model [8.528384027684194]
For massive datasets, fixed rank kriging using the Expectation-Maximization (EM) algorithm for estimation has been proposed as an alternative to the usual but computationally prohibitive kriging method.
We develop an alternative method that utilizes the Spatial Mixed Effects (SME) model, but allows for additional flexibility by estimating the range of the spatial dependence between the observations and the knots via an Alternating Expectation Conditional Maximization (AECM) algorithm.
Experiments show that our methodology improves estimation without sacrificing prediction accuracy while also minimizing the additional computational burden of extra parameter estimation.
arXiv Detail & Related papers (2020-03-12T19:36:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.