PKF: Probabilistic Data Association Kalman Filter for Multi-Object Tracking
- URL: http://arxiv.org/abs/2411.06378v1
- Date: Sun, 10 Nov 2024 07:34:31 GMT
- Title: PKF: Probabilistic Data Association Kalman Filter for Multi-Object Tracking
- Authors: Hanwen Cao, George J. Pappas, Nikolay Atanasov,
- Abstract summary: We derive a new Kalman filter with probabilistic data association between measurements and states.
We show that the association probabilities can be computed as permanents of matrices with measurement likelihood entries.
Experiments in simulation show that our filter achieves lower tracking errors than the well-established joint probabilistic data association filter.
- Score: 39.55428600377688
- License:
- Abstract: In this paper, we derive a new Kalman filter with probabilistic data association between measurements and states. We formulate a variational inference problem to approximate the posterior density of the state conditioned on the measurement data. We view the unknown data association as a latent variable and apply Expectation Maximization (EM) to obtain a filter with update step in the same form as the Kalman filter but with expanded measurement vector of all potential associations. We show that the association probabilities can be computed as permanents of matrices with measurement likelihood entries. We also propose an ambiguity check that associates only a subset of ambiguous measurements and states probabilistically, thus reducing the association time and preventing low-probability measurements from harming the estimation accuracy. Experiments in simulation show that our filter achieves lower tracking errors than the well-established joint probabilistic data association filter (JPDAF), while running at comparable rate. We also demonstrate the effectiveness of our filter in multi-object tracking (MOT) on multiple real-world datasets, including MOT17, MOT20, and DanceTrack. We achieve better higher order tracking accuracy (HOTA) than previous Kalman-filter methods and remain real-time. Associating only bounding boxes without deep features or velocities, our method ranks top-10 on both MOT17 and MOT20 in terms of HOTA. Given offline detections, our algorithm tracks at 250+ fps on a single laptop CPU. Code is available at https://github.com/hwcao17/pkf.
Related papers
- Convolutional Unscented Kalman Filter for Multi-Object Tracking with Outliers [17.38485814970625]
Multi-object tracking (MOT) is an essential technique for navigation in autonomous driving.
Recently tracking methods are based on filtering algorithms that overlook outliers, leading to reduced tracking accuracy or even loss of the objects trajectory.
We show that ConvUKF has a bounded tracking error in the presence of outliers, which implies robust stability.
arXiv Detail & Related papers (2024-06-03T14:42:38Z) - MapTrack: Tracking in the Map [14.991113420276767]
Multi-Object Tracking (MOT) aims to maintain stable and uninterrupted trajectories for each target.
Most state-of-the-art approaches first detect objects in each frame and then implement data association between new detections and existing tracks.
We propose a new framework comprising of three lightweight and plug-and-play algorithms: the probability map, the prediction map, and the covariance adaptive Kalman filter.
arXiv Detail & Related papers (2024-02-20T12:35:23Z) - Deep Kalman Filters Can Filter [9.131190818372474]
Deep Kalman filters (DKFs) are a class of neural network models that generate Gaussian probability measures from sequential data.
DKFs are inspired by the Kalman filter, but they lack concrete theoretical ties to the filtering problem.
We show that continuous-time DKFs can implement the conditional law of a broad class of non-Markovian and conditionally Gaussian signal processes.
arXiv Detail & Related papers (2023-10-30T14:58:12Z) - Robust Multi-Object Tracking by Marginal Inference [92.48078680697311]
Multi-object tracking in videos requires to solve a fundamental problem of one-to-one assignment between objects in adjacent frames.
We present an efficient approach to compute a marginal probability for each pair of objects in real time.
It achieves competitive results on MOT17 and MOT20 benchmarks.
arXiv Detail & Related papers (2022-08-07T14:04:45Z) - Tracking Every Thing in the Wild [61.917043381836656]
We introduce a new metric, Track Every Thing Accuracy (TETA), breaking tracking measurement into three sub-factors: localization, association, and classification.
Our experiments show that TETA evaluates trackers more comprehensively, and TETer achieves significant improvements on the challenging large-scale datasets BDD100K and TAO.
arXiv Detail & Related papers (2022-07-26T15:37:19Z) - Sparse Regularized Correlation Filter for UAV Object Tracking with
adaptive Contextual Learning and Keyfilter Selection [20.786475337107472]
correlation filter has been widely applied in unmanned aerial vehicle (UAV) tracking.
It is fragile because of two inherent defects, i.e. boundary effect and filter corruption.
We propose a novel $ell_1$ regularization correlation filter with adaptive contextual learning and keyfilter selection.
arXiv Detail & Related papers (2022-05-07T10:25:56Z) - Training Compact CNNs for Image Classification using Dynamic-coded
Filter Fusion [139.71852076031962]
We present a novel filter pruning method, dubbed dynamic-coded filter fusion (DCFF)
We derive compact CNNs in a computation-economical and regularization-free manner for efficient image classification.
Our DCFF derives a compact VGGNet-16 with only 72.77M FLOPs and 1.06M parameters while reaching top-1 accuracy of 93.47%.
arXiv Detail & Related papers (2021-07-14T18:07:38Z) - Online Multi-Object Tracking and Segmentation with GMPHD Filter and
Mask-based Affinity Fusion [79.87371506464454]
We propose a fully online multi-object tracking and segmentation (MOTS) method that uses instance segmentation results as an input.
The proposed method is based on the Gaussian mixture probability hypothesis density (GMPHD) filter, a hierarchical data association (HDA), and a mask-based affinity fusion (MAF) model.
In the experiments on the two popular MOTS datasets, the key modules show some improvements.
arXiv Detail & Related papers (2020-08-31T21:06:22Z) - Tracking Road Users using Constraint Programming [79.32806233778511]
We present a constraint programming (CP) approach for the data association phase found in the tracking-by-detection paradigm of the multiple object tracking (MOT) problem.
Our proposed method was tested on a motorized vehicles tracking dataset and produces results that outperform the top methods of the UA-DETRAC benchmark.
arXiv Detail & Related papers (2020-03-10T00:04:32Z) - Probabilistic 3D Multi-Object Tracking for Autonomous Driving [23.036619327925088]
We present our on-line tracking method, which made the first place in the NuScenes Tracking Challenge.
Our method estimates the object states by adopting a Kalman Filter.
Our experimental results on the NuScenes validation and test set show that our method outperforms the AB3DMOT baseline method.
arXiv Detail & Related papers (2020-01-16T06:38:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.