SequentialBreak: Large Language Models Can be Fooled by Embedding Jailbreak Prompts into Sequential Prompt Chains
- URL: http://arxiv.org/abs/2411.06426v1
- Date: Sun, 10 Nov 2024 11:08:28 GMT
- Title: SequentialBreak: Large Language Models Can be Fooled by Embedding Jailbreak Prompts into Sequential Prompt Chains
- Authors: Bijoy Ahmed Saiem, MD Sadik Hossain Shanto, Rakib Ahsan, Md Rafi ur Rashid,
- Abstract summary: This paper introduces SequentialBreak, a novel jailbreak attack that exploits a vulnerability in Large Language Models (LLMs)
We discuss several scenarios, not limited to examples like Question Bank, Dialog Completion, and Game Environment, where the harmful prompt is embedded within benign ones that can fool LLMs into generating harmful responses.
Extensive experiments demonstrate that SequentialBreak uses only a single query to achieve a substantial gain of attack success rate.
- Score: 0.0
- License:
- Abstract: As the integration of the Large Language Models (LLMs) into various applications increases, so does their susceptibility to misuse, raising significant security concerns. Numerous jailbreak attacks have been proposed to assess the security defense of LLMs. Current jailbreak attacks mainly rely on scenario camouflage, prompt obfuscation, prompt optimization, and prompt iterative optimization to conceal malicious prompts. In particular, sequential prompt chains in a single query can lead LLMs to focus on certain prompts while ignoring others, facilitating context manipulation. This paper introduces SequentialBreak, a novel jailbreak attack that exploits this vulnerability. We discuss several scenarios, not limited to examples like Question Bank, Dialog Completion, and Game Environment, where the harmful prompt is embedded within benign ones that can fool LLMs into generating harmful responses. The distinct narrative structures of these scenarios show that SequentialBreak is flexible enough to adapt to various prompt formats beyond those discussed. Extensive experiments demonstrate that SequentialBreak uses only a single query to achieve a substantial gain of attack success rate over existing baselines against both open-source and closed-source models. Through our research, we highlight the urgent need for more robust and resilient safeguards to enhance LLM security and prevent potential misuse. All the result files and website associated with this research are available in this GitHub repository: https://anonymous.4open.science/r/JailBreakAttack-4F3B/.
Related papers
- EnJa: Ensemble Jailbreak on Large Language Models [69.13666224876408]
Large Language Models (LLMs) are increasingly being deployed in safety-critical applications.
LLMs can still be jailbroken by carefully crafted malicious prompts, producing content that violates policy regulations.
We propose a novel EnJa attack to hide harmful instructions using prompt-level jailbreak, boost the attack success rate using a gradient-based attack, and connect the two types of jailbreak attacks via a template-based connector.
arXiv Detail & Related papers (2024-08-07T07:46:08Z) - WordGame: Efficient & Effective LLM Jailbreak via Simultaneous Obfuscation in Query and Response [23.344727384686898]
We analyze the common pattern of the current safety alignment and show that it is possible to exploit such patterns for jailbreaking attacks by simultaneous obfuscation in queries and responses.
Specifically, we propose WordGame attack, which replaces malicious words with word games to break down the adversarial intent of a query.
arXiv Detail & Related papers (2024-05-22T21:59:22Z) - AdaShield: Safeguarding Multimodal Large Language Models from Structure-based Attack via Adaptive Shield Prompting [54.931241667414184]
We propose textbfAdaptive textbfShield Prompting, which prepends inputs with defense prompts to defend MLLMs against structure-based jailbreak attacks.
Our methods can consistently improve MLLMs' robustness against structure-based jailbreak attacks.
arXiv Detail & Related papers (2024-03-14T15:57:13Z) - DrAttack: Prompt Decomposition and Reconstruction Makes Powerful LLM Jailbreakers [74.7446827091938]
We introduce an automatic prompt textbfDecomposition and textbfReconstruction framework for jailbreak textbfAttack (DrAttack)
DrAttack includes three key components: (a) Decomposition' of the original prompt into sub-prompts, (b) Reconstruction' of these sub-prompts implicitly by in-context learning with semantically similar but harmless reassembling demo, and (c) a Synonym Search' of sub-prompts, aiming to find sub-prompts' synonyms that maintain the original intent while
arXiv Detail & Related papers (2024-02-25T17:43:29Z) - LLMs Can Defend Themselves Against Jailbreaking in a Practical Manner: A
Vision Paper [16.078682415975337]
Jailbreaking is an emerging adversarial attack that bypasses the safety alignment deployed in off-the-shelf large language models (LLMs)
This paper proposes a lightweight yet practical defense called SELFDEFEND.
It can defend against all existing jailbreak attacks with minimal delay for jailbreak prompts and negligible delay for normal user prompts.
arXiv Detail & Related papers (2024-02-24T05:34:43Z) - A Wolf in Sheep's Clothing: Generalized Nested Jailbreak Prompts can Fool Large Language Models Easily [51.63085197162279]
Large Language Models (LLMs) are designed to provide useful and safe responses.
adversarial prompts known as 'jailbreaks' can circumvent safeguards.
We propose ReNeLLM, an automatic framework that leverages LLMs themselves to generate effective jailbreak prompts.
arXiv Detail & Related papers (2023-11-14T16:02:16Z) - SmoothLLM: Defending Large Language Models Against Jailbreaking Attacks [99.23352758320945]
We propose SmoothLLM, the first algorithm designed to mitigate jailbreaking attacks on large language models (LLMs)
Based on our finding that adversarially-generated prompts are brittle to character-level changes, our defense first randomly perturbs multiple copies of a given input prompt, and then aggregates the corresponding predictions to detect adversarial inputs.
arXiv Detail & Related papers (2023-10-05T17:01:53Z) - AutoDAN: Generating Stealthy Jailbreak Prompts on Aligned Large Language Models [54.95912006700379]
We introduce AutoDAN, a novel jailbreak attack against aligned Large Language Models.
AutoDAN can automatically generate stealthy jailbreak prompts by the carefully designed hierarchical genetic algorithm.
arXiv Detail & Related papers (2023-10-03T19:44:37Z) - FuzzLLM: A Novel and Universal Fuzzing Framework for Proactively Discovering Jailbreak Vulnerabilities in Large Language Models [11.517609196300217]
We introduce FuzzLLM, an automated fuzzing framework designed to proactively test and discover jailbreak vulnerabilities in Large Language Models (LLMs)
We utilize templates to capture the structural integrity of a prompt and isolate key features of a jailbreak class as constraints.
By integrating different base classes into powerful combo attacks and varying the elements of constraints and prohibited questions, FuzzLLM enables efficient testing with reduced manual effort.
arXiv Detail & Related papers (2023-09-11T07:15:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.