Dropout the High-rate Downsampling: A Novel Design Paradigm for UHD Image Restoration
- URL: http://arxiv.org/abs/2411.06456v1
- Date: Sun, 10 Nov 2024 13:05:36 GMT
- Title: Dropout the High-rate Downsampling: A Novel Design Paradigm for UHD Image Restoration
- Authors: Chen Wu, Ling Wang, Long Peng, Dianjie Lu, Zhuoran Zheng,
- Abstract summary: D2Net enables direct full-resolution inference on Ultra-high-definition (UHD) images.
We show that our model achieves better quantitative and qualitative results than state-of-the-art methods.
- Score: 11.866565346920781
- License:
- Abstract: With the popularization of high-end mobile devices, Ultra-high-definition (UHD) images have become ubiquitous in our lives. The restoration of UHD images is a highly challenging problem due to the exaggerated pixel count, which often leads to memory overflow during processing. Existing methods either downsample UHD images at a high rate before processing or split them into multiple patches for separate processing. However, high-rate downsampling leads to significant information loss, while patch-based approaches inevitably introduce boundary artifacts. In this paper, we propose a novel design paradigm to solve the UHD image restoration problem, called D2Net. D2Net enables direct full-resolution inference on UHD images without the need for high-rate downsampling or dividing the images into several patches. Specifically, we ingeniously utilize the characteristics of the frequency domain to establish long-range dependencies of features. Taking into account the richer local patterns in UHD images, we also design a multi-scale convolutional group to capture local features. Additionally, during the decoding stage, we dynamically incorporate features from the encoding stage to reduce the flow of irrelevant information. Extensive experiments on three UHD image restoration tasks, including low-light image enhancement, image dehazing, and image deblurring, show that our model achieves better quantitative and qualitative results than state-of-the-art methods.
Related papers
- Assessing UHD Image Quality from Aesthetics, Distortions, and Saliency [51.36674160287799]
We design a multi-branch deep neural network (DNN) to assess the quality of UHD images from three perspectives.
aesthetic features are extracted from low-resolution images downsampled from the UHD ones.
Technical distortions are measured using a fragment image composed of mini-patches cropped from UHD images.
The salient content of UHD images is detected and cropped to extract quality-aware features from the salient regions.
arXiv Detail & Related papers (2024-09-01T15:26:11Z) - Towards Ultra-High-Definition Image Deraining: A Benchmark and An Efficient Method [42.331058889312466]
This paper contributes the first large-scale UHD image deraining dataset, 4K-Rain13k, that contains 13,000 image pairs at 4K resolution.
We develop an effective and efficient vision-based architecture (UDR-Mixer) to better solve this task.
arXiv Detail & Related papers (2024-05-27T11:45:08Z) - Advancements and Trends in Ultra-High-Resolution Image Processing: An
Overview [2.17172315573773]
In this paper, we introduce the current state of UHD image enhancement from two perspectives.
One is the application field, the other is the technology.
arXiv Detail & Related papers (2023-11-30T23:47:37Z) - SMAE: Few-shot Learning for HDR Deghosting with Saturation-Aware Masked
Autoencoders [97.64072440883392]
We propose a novel semi-supervised approach to realize few-shot HDR imaging via two stages of training, called SSHDR.
Unlikely previous methods, directly recovering content and removing ghosts simultaneously, which is hard to achieve optimum.
Experiments demonstrate that SSHDR outperforms state-of-the-art methods quantitatively and qualitatively within and across different datasets.
arXiv Detail & Related papers (2023-04-14T03:42:51Z) - Gated Multi-Resolution Transfer Network for Burst Restoration and
Enhancement [75.25451566988565]
We propose a novel Gated Multi-Resolution Transfer Network (GMTNet) to reconstruct a spatially precise high-quality image from a burst of low-quality raw images.
Detailed experimental analysis on five datasets validates our approach and sets a state-of-the-art for burst super-resolution, burst denoising, and low-light burst enhancement.
arXiv Detail & Related papers (2023-04-13T17:54:00Z) - Embedding Fourier for Ultra-High-Definition Low-Light Image Enhancement [78.67036949708795]
Ultra-High-Definition (UHD) photo has gradually become the standard configuration in advanced imaging devices.
We propose a new solution, UHDFour, that embeds Fourier transform into a cascaded network.
We also contribute the first real UHD LLIE dataset, textbfUHD-LL, that contains 2,150 low-noise/normal-clear 4K image pairs.
arXiv Detail & Related papers (2023-02-23T07:43:41Z) - HDRUNet: Single Image HDR Reconstruction with Denoising and
Dequantization [39.82945546614887]
We propose a novel learning-based approach using a spatially dynamic encoder-decoder network, HDRUNet, to learn an end-to-end mapping for single image HDR reconstruction.
Our method achieves the state-of-the-art performance in quantitative comparisons and visual quality.
arXiv Detail & Related papers (2021-05-27T12:12:34Z) - Early Exit or Not: Resource-Efficient Blind Quality Enhancement for
Compressed Images [54.40852143927333]
Lossy image compression is pervasively conducted to save communication bandwidth, resulting in undesirable compression artifacts.
We propose a resource-efficient blind quality enhancement (RBQE) approach for compressed images.
Our approach can automatically decide to terminate or continue enhancement according to the assessed quality of enhanced images.
arXiv Detail & Related papers (2020-06-30T07:38:47Z) - Invertible Image Rescaling [118.2653765756915]
We develop an Invertible Rescaling Net (IRN) to produce visually-pleasing low-resolution images.
We capture the distribution of the lost information using a latent variable following a specified distribution in the downscaling process.
arXiv Detail & Related papers (2020-05-12T09:55:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.