Bridge: A Unified Framework to Knowledge Graph Completion via Language Models and Knowledge Representation
- URL: http://arxiv.org/abs/2411.06660v1
- Date: Mon, 11 Nov 2024 01:59:04 GMT
- Title: Bridge: A Unified Framework to Knowledge Graph Completion via Language Models and Knowledge Representation
- Authors: Qiao Qiao, Yuepei Li, Qing Wang, Kang Zhou, Qi Li,
- Abstract summary: We propose a novel framework called Bridge, which jointly encodes structural and semantic information of Knowledge Graphs (KGs)
Specifically, we strategically encode entities and relations separately by PLMs to better utilize the semantic knowledge of PLMs.
To bridge the gap between KGs and PLMs, we employ a self-supervised representation learning method called BYOL to fine-tune PLMs with two different views of a triple.
- Score: 14.801411392475439
- License:
- Abstract: Knowledge graph completion (KGC) is a task of inferring missing triples based on existing Knowledge Graphs (KGs). Both structural and semantic information are vital for successful KGC. However, existing methods only use either the structural knowledge from the KG embeddings or the semantic information from pre-trained language models (PLMs), leading to suboptimal model performance. Moreover, since PLMs are not trained on KGs, directly using PLMs to encode triples may be inappropriate. To overcome these limitations, we propose a novel framework called Bridge, which jointly encodes structural and semantic information of KGs. Specifically, we strategically encode entities and relations separately by PLMs to better utilize the semantic knowledge of PLMs and enable structured representation learning via a structural learning principle. Furthermore, to bridge the gap between KGs and PLMs, we employ a self-supervised representation learning method called BYOL to fine-tune PLMs with two different views of a triple. Unlike BYOL, which uses augmentation methods to create two semantically similar views of the same image, potentially altering the semantic information. We strategically separate the triple into two parts to create different views, thus avoiding semantic alteration. Experiments demonstrate that Bridge outperforms the SOTA models on three benchmark datasets.
Related papers
- GLTW: Joint Improved Graph Transformer and LLM via Three-Word Language for Knowledge Graph Completion [52.026016846945424]
We propose a new method called GLTW, which encodes the structural information of KGs and merges it with Large Language Models.
Specifically, we introduce an improved Graph Transformer (iGT) that effectively encodes subgraphs with both local and global structural information.
Also, we develop a subgraph-based multi-classification training objective, using all entities within KG as classification objects, to boost learning efficiency.
arXiv Detail & Related papers (2025-02-17T06:02:59Z) - Self-supervised Quantized Representation for Seamlessly Integrating Knowledge Graphs with Large Language Models [17.88134311726175]
We propose a framework to learn and apply quantized codes for each entity, aiming for the seamless integration of Knowledge Graphs with Large Language Models.
Experiment results demonstrate that SSQR outperforms existing unsupervised quantized methods, producing more distinguishable codes.
The fine-tuned LLaMA2 and LLaMA3.1 also have superior performance on KG link prediction and triple classification tasks.
arXiv Detail & Related papers (2025-01-30T03:40:20Z) - KICGPT: Large Language Model with Knowledge in Context for Knowledge
Graph Completion [27.405080941584533]
We propose KICGPT, a framework that integrates a large language model and a triple-based KGC retriever.
It alleviates the long-tail problem without incurring additional training overhead.
Empirical results on benchmark datasets demonstrate the effectiveness of KICGPT with smaller training overhead and no finetuning.
arXiv Detail & Related papers (2024-02-04T08:01:07Z) - Two Heads Are Better Than One: Integrating Knowledge from Knowledge
Graphs and Large Language Models for Entity Alignment [31.70064035432789]
We propose a Large Language Model-enhanced Entity Alignment framework (LLMEA)
LLMEA identifies candidate alignments for a given entity by considering both embedding similarities between entities across Knowledge Graphs and edit distances to a virtual equivalent entity.
Experiments conducted on three public datasets reveal that LLMEA surpasses leading baseline models.
arXiv Detail & Related papers (2024-01-30T12:41:04Z) - Contextualization Distillation from Large Language Model for Knowledge
Graph Completion [51.126166442122546]
We introduce the Contextualization Distillation strategy, a plug-in-and-play approach compatible with both discriminative and generative KGC frameworks.
Our method begins by instructing large language models to transform compact, structural triplets into context-rich segments.
Comprehensive evaluations across diverse datasets and KGC techniques highlight the efficacy and adaptability of our approach.
arXiv Detail & Related papers (2024-01-28T08:56:49Z) - Unifying Large Language Models and Knowledge Graphs: A Roadmap [61.824618473293725]
Large language models (LLMs) are making new waves in the field of natural language processing and artificial intelligence.
Knowledge Graphs (KGs), Wikipedia and Huapu for example, are structured knowledge models that explicitly store rich factual knowledge.
arXiv Detail & Related papers (2023-06-14T07:15:26Z) - Investigating Graph Structure Information for Entity Alignment with
Dangling Cases [31.779386064600956]
Entity alignment aims to discover the equivalent entities in different knowledge graphs (KGs)
We propose a novel entity alignment framework called Weakly-optimal Graph Contrastive Learning (WOGCL)
We show that WOGCL outperforms the current state-of-the-art methods with pure structural information in both traditional (relaxed) and dangling settings.
arXiv Detail & Related papers (2023-04-10T17:24:43Z) - Joint Language Semantic and Structure Embedding for Knowledge Graph
Completion [66.15933600765835]
We propose to jointly embed the semantics in the natural language description of the knowledge triplets with their structure information.
Our method embeds knowledge graphs for the completion task via fine-tuning pre-trained language models.
Our experiments on a variety of knowledge graph benchmarks have demonstrated the state-of-the-art performance of our method.
arXiv Detail & Related papers (2022-09-19T02:41:02Z) - Exploiting Structured Knowledge in Text via Graph-Guided Representation
Learning [73.0598186896953]
We present two self-supervised tasks learning over raw text with the guidance from knowledge graphs.
Building upon entity-level masked language models, our first contribution is an entity masking scheme.
In contrast to existing paradigms, our approach uses knowledge graphs implicitly, only during pre-training.
arXiv Detail & Related papers (2020-04-29T14:22:42Z) - On the Role of Conceptualization in Commonsense Knowledge Graph
Construction [59.39512925793171]
Commonsense knowledge graphs (CKGs) like Atomic and ASER are substantially different from conventional KGs.
We introduce to CKG construction methods conceptualization to view entities mentioned in text as instances of specific concepts or vice versa.
Our methods can effectively identify plausible triples and expand the KG by triples of both new nodes and edges of high diversity and novelty.
arXiv Detail & Related papers (2020-03-06T14:35:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.